基于机器视觉的工业巡检过程监控分析系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61572083); 教育部联合基金(6141A02022610); 陕西省重点研发计划重点项目(2018ZDXM-GY-047); 中央高校团队培育项目(300102248402)


Monitoring and Analysis System of Industrial Inspection Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    工业巡检中人员的行为与生产安全息息相关, 有关巡检监测方法的设计成为了研究热点. 针对目前巡检监控分析依赖于人工判断且精度低的问题, 本文提出了一种基于机器视觉的工业现场巡检过程监控分析系统. 首先利用YOLOv3网络对将视频流中的人员进行检测, 根据检测结果, 使用人员行为分析方法, 剔除场景内干扰并获取巡检人员真实的行为信息, 最后根据人员行为信息对巡检过程进行评估, 将评估结果存储至数据库同时发布至网页. 本文使用多个监控视角的视频进行实验, 实验结果表明, 本文所提系统在复杂环境下, 能够准确检测巡检人员并分析其行为, 同时满足实时处理的需求. 本文可以为工业巡检的智能化监测提供参考.

    Abstract:

    People’s behavior in industrial inspections is closely bound up with safe production, and the design of inspection monitoring methods has become a hot research area. Aiming at the problem that current monitoring and analysis of inspection depend on manual judgment with low accuracy, this study proposes a monitoring and analysis system for industrial inspection based on machine vision. Firstly, the people in the video stream are detected by the YOLOv3 network. According to the detection results, in-scene interferences are removed by behavior analysis to obtain real behavior of inspectors. Finally, the inspection process is evaluated based on the behavior, and then results are stored in the database and posted to the web page. Videos with multiple monitoring perspectives are used for experiments. Results demonstrate that the system proposed in this study can accurately detect inspectors and analyze their behavior in complex environments, while achieving real-time processing. This result can serve as a reference for the intelligent monitoring of industrial inspection.

    参考文献
    相似文献
    引证文献
引用本文

贾金明,宋焕生,梁浩翔,云旭,戴喆.基于机器视觉的工业巡检过程监控分析系统.计算机系统应用,2021,30(2):70-76

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-20
  • 最后修改日期:2020-06-16
  • 录用日期:
  • 在线发布日期: 2021-01-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号