面向机器人场景的带宽保证快速切换技术
作者:

Fast Handoff Technology with Bandwidth Guarantee for Robot Scene
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    802.11规定的切换过程十分耗时, 同时移动终端根据接收到的信号强度来选择AP往往不能满足通信带宽的需求, 这两点对于需要依靠不间断通信来进行作业的工业机器人十分不利. 本文面向工业机器人场景提出一种基于动态无线地图的带宽保证快速切换技术. 利用预先建立和下载的无线地图, 机器人不需扫描信道即可获得附近可用的AP基站, 同时利用服务器实时收集AP的工作负载并向机器人提供AP选择服务, 可同时满足低切换延时和带宽保证两个切换目标. 本文在网络仿真平台NS3上实现了所提出的快速切换框架, 并与已有的切换方案进行比较. 实验结果表明, 本文方案在任何情况下都优于已有的切换方案, 并且只要机器人附近存在带宽可满足的AP, 本文方案总是可以关联到最佳的AP.

    Abstract:

    The handoff process specified in 802.11 is time-consuming, and the strategy of choosing AP based on the received signal strength often fails to meet the mobile station’s bandwidth requirement. Therefore, 802.11 is unsuitable for industrial robots which have to rely on uninterrupted communication to work. This study proposes a fast handoff technology based on dynamic WiFi map that can provide bandwidth guarantee for mobile industrial robots. A prebuilt WiFi map is used to help the robots obtain their nearby Access Points (APs) without channel scanning, and at the same time, a server is used to collect the workloads of all APs periodically and provide robots with AP selection service that tries to meet both low handoff delay and bandwidth guarantee. This study implements the proposed fast handoff technology on a famous network simulation platform NS3 and compares it with some existing handoff schemes. The experimental results show that the proposed handoff scheme is superior to other handoff schemes in all cases, and can always choose the best APs with bandwidth satisfaction as long as there exists APs in the vicinity of the robot that have sufficient bandwidth.

    参考文献
    [1] Balasubramanian A, Mahajan R, Venkataramani A, et al. Interactive WiFi connectivity for moving vehicles. Proceedings of ACM SIGCOMM 2008 Conference on Data Communication. Seattle, WA, USA. 2008. 427–438.
    [2] Yoon M, Cho K, Li J, et al. AdaptiveScan: The fast layer-2 handoff for WLAN. Proceedings of the 2011 8th International Conference on Information Technology: New Generations. Las Vegas, NV, USA. 2011. 106–111.
    [3] Mishra A, Shin M, Arbaugh W. An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Computer Communication Review, 2003, 33(2): 93–102. [doi: 10.1145/956981.956990
    [4] Majumder A, Nath S. Classification of seamless handoff process in wifi network based on radios. In: Smys S, Bestak R, Chen JIZ, et al., eds. International Conference on Computer Networks and Communication Technologies. Singapore. 2019. 1055–1065.
    [5] Jiang HL, Leung VCM, Gao CH, et al. Mimo-assisted handoff scheme for communication-based train control systems. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1578–1590. [doi: 10.1109/TVT.2014.2332188
    [6] Xue CJ, Li WZ, Yu LF, et al. SERO: A model-driven seamless roaming framework for wireless mesh network with multipath TCP. IEEE Transactions on Communications, 2019, 67(2): 1284–1296. [doi: 10.1109/TCOMM.2018.2880785
    [7] Jeong JP, Park YD, Suh YJ. An efficient channel scanning scheme with dual-interfaces for seamless handoff in IEEE 802.11 WLANs. IEEE Communications Letters, 2018, 22(1): 169–172. [doi: 10.1109/LCOMM.2017.2763941
    [8] Jin S, Choi S. A seamless handoff with multiple radios in IEEE 802.11 WLANs. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1408–1418. [doi: 10.1109/TVT.2013.2283914
    [9] Lal Tetarwal M, Kuntal A, Karmakar P. A review on handoff latency reducing techniques in IEEE 802.11 WLAN. International Journal of Computer Applications. 2014, NWNC(2): 22–28.
    [10] Das D. A fast handoff technique for wireless mobile networks. Proceedings of the 15th International Conference on Distributed Computing and Internet Technology. Bhubaneswar, India. 2019. 251–259.
    [11] Park SH, Kim HS, Park CS, et al. Selective channel scanning for fast handoff in wireless LAN using neighbor graph. Proceedings of IFIP TC6 9th International Conference on Personal Wireless Communications. Delft, the Netherlands. 2004. 194–203.
    [12] Ling TC, Lee JF, Hoh KP. Reducing handoff delay in WLAN using selective proactive context caching. Malaysian Journal of Computer Science, 2010, 23(1): 49–59. [doi: 10.22452/mjcs.vol23no1.4
    [13] Kim SR, Kim KJ, Baek JJ, et al. A WLAN handoff scheme based on selective channel scan using pre-collected AP information for VoIP application. Proceedings of 2009 International Conference on Innovations in Information Technology. Al Ain, Abu Dhabi. 2009. 70–74.
    [14] Wang R, Mukerjee MK, Veloso M, et al. Wireless map-based handoffs for mobile robots. Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA. 2015. 5545–5550.
    [15] Wen YF, Shen JC. Load-balancing metrics: Comparison for infrastructure-based wireless networks. Computers & Electrical Engineering, 2014, 40(2): 730–753
    [16] Lu MM, Wu J. Localized access point selection in infrastructure wireless LAN. Proceedings of MILCOM 2007-IEEE Military Communications Conference. Orlando, FL, USA. 2007. 1–7.
    [17] Vasudevan S, Papagiannaki K, Diot C, et al. Facilitating access point selection in IEEE 802.11 wireless networks. Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement. Berkeley, CA, USA. 2005. 26.
    [18] Sheu ST, Wu CC. Dynamic Load Balance Algorithm (DLBA) for IEEE 802.11 WireLess LAN. Tamkang Journal of Science and Engineering, 1999, 2(1): 45–52
    [19] Nicholson AJ, Chawathe Y, Chen MY, et al. Improved access point selection. Proceedings of the 4th International Conference on Mobile Systems, Applications and Services. Uppsala, Sweden. 2006. 233–245.
    [20] Lee MT, Lai LT, Lai D. Enhanced algorithm for initial AP selection and roaming: US, 20040039817. (2004-02-26).
    [21] Chen JC, Chen TC, Zhang T, et al. WLC19-4: Effective AP selection and load balancing in IEEE 802.11 wireless LANs. Proceedings of IEEE GLOBECOM 2006. San Francisco, CA, USA. 2006. 1–6.
    [22] 刘小花. IEEE 802.11b物理层帧结构的研究与性能分析. 数据通信, 2012, (3): 38–40. [doi: 10.3969/j.issn.1002-5057.2012.03.014
    [23] Heusse M, Rousseau F, Berger-Sabbatel G, et al. Performance anomaly of 802.11b. Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications. San Francisco, CA, USA. 2003. 836–843.
    [24] Ernst JB, Kremer SC, Rodrigues JJPC. A Wi-Fi simulation model which supports channel scanning across multiple non-overlapping channels in NS3. Proceedings of the 2014 IEEE 28th International Conference on Advanced Information Networking and Applications. Victoria, UK. 2014. 268–275.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘路,华蓓.面向机器人场景的带宽保证快速切换技术.计算机系统应用,2021,30(1):1-9

复制
分享
文章指标
  • 点击次数:1194
  • 下载次数: 2780
  • HTML阅读次数: 1616
  • 引用次数: 0
历史
  • 收稿日期:2020-05-12
  • 最后修改日期:2020-06-10
  • 在线发布日期: 2020-12-31
文章二维码
您是第12436028位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号