基于前后端交互的人脸识别系统
作者:
基金项目:

国家自然科学基金(61572083);教育部联合基金(6141A02022610);陕西省重点研发计划重点项目(2018ZDXM-GY-047);中央高校团队培育项目(300102248402)


Face Recognition System Based on Front and Back Interaction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对现有的人脸识别系统计算效率低和鲁棒性较差等问题,本文提出了一种基于前后端交互的人脸识别系统,系统包含客户端、数据库以及服务端.首先,在客户端提出了基于GrabCut的人脸兴趣区域(ROI)提取算法.其次,将提取到的ROI传输到服务端,并在服务端使用ResNet网络根据ROI提取人脸特征点.最后,将服务端中提取到的人脸特征点返回给客户端,在客户端将该信息与数据库中预存的特征点进行欧式距离匹配,得到人脸识别结果.实验在CeleA数据集与随机视频上进行测试,结果表明提出的ROI提取算法明显提升了人脸识别的精度和鲁棒性,并且系统的前后端交互结构相较于传统的非交互结构极大地提升了人脸识别的计算效率.

    Abstract:

    Aiming at the problems of low calculation efficiency and poor robustness of the existing face recognition system, this study proposed a face recognition system based on front and back interaction, including client, database, and server. First, a GrabCut-based facial Region Of Interest (ROI) extraction algorithm was proposed for the client end. Second, the extracted ROI is transmitted to the server, and the ResNet network is used on the server to extract facial feature points according to the ROI. Finally, the facial feature points extracted from the server were returned to the client, and the client performs Euclidean distance matching between this information and the feature points that were pre-stored in the database to obtain the face recognition result. The experiments were performed on the CeleA database and random videos, and the results show that the proposed ROI extraction algorithm significantly improves the accuracy and robustness of face recognition. Moreover, compared with the traditional non-interactive structure, the front and back interactive structure of the system greatly improves the computational efficiency of face recognition.

    参考文献
    [1] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    [2] 张剑, 何骅, 詹小四, 等. 结合特征适配与拉普拉斯形变的3维人脸重建. 中国图象图形学报, 2014, 19(9): 1349-1359. [doi: 10.11834/jig.20140912
    [3] Neumann L, Matas J. Real-time scene text localization and recognition. Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA. 2012. 3538-3545.
    [4] Akbani O, Gokrani A, Quresh M, et al. Character recognition in natural scene images. Proceedings of 2015 International Conference on Information and Communication Techno-logies. Karachi, Pakistan. 2015. 1-6.
    [5] 慕春雷. 基于HOG特征的人脸识别系统研究[硕士学位论文]. 成都: 电子科技大学, 2013.
    [6] Lowe DG. Distinctive image features from scale-invariant key-points. International Journal of Computer Vision, 2004, 60(2): 91-110. [doi: 10.1023/B:VISI.0000029664.99615.94
    [7] Chen D, Cao XD, Wen F, et al. Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA. 2013. 3025-3032.
    [8] Juefei-Xu F, Boddeti VN, Savvides M. Local binary convolutional neural networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 4284-4293.
    [9] Hasani B, Mahoor MH. Spatio-temporal facial expression recognition using convolutional neural networks and conditional random fields. Proceedings of the 12th IEEE International Conference on Automatic Face & Gesture Recognition. Washington, DC, USA. 2017. 790-795.
    [10] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, NV, USA. 2012. 1097-1105.
    [11] Szegedy C, Liu W, Jia YQ, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 1-9.
    [12] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of 2015 International Conference on Learning Representations. San Diego, CA, USA. 2015. 1482-1496.
    [13] Sun Y, Wang XG, Tang XO. Hybrid deep learning for face verification. Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia. 2013. 1489-1496.
    [14] Taigman Y, Yang M, Ranzato M, et al. DeepFace: Closing the gap to human-level performance in face verification. Proceedings of 2014 IEEE International Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014. 1701-1708.
    [15] 袁姮, 王志宏, 姜文涛. 刚性区域特征点的3维人脸识别. 中国图象图形学报, 2017, 22(1): 49-57. [doi: 10.11834/jig.20170106
    [16] 梁华刚, 易生, 茹锋. 结合像素模式和特征点模式的实时表情识别. 中国图象图形学报, 2017, 22(12): 1737-1749. [doi: 10.11834/jig.170251
    [17] Yu WS, Hou ZQ, Wang P, et al. Weakly supervised foreground segmentation based on superpixel grouping. IEEE Access, 2018, 6: 12269-12279. [doi: 10.1109/ACCESS.2018.2810210
    [18] Tang M, Gorelick L, Veksler O, et al. GrabCut in one cut. Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia. 2013. 1769-1776.
    [19] 冯建文, 董剑. 改进的TCP应用层协议在远程实验系统中的应用. 计算机应用与软件, 2018, 35(12): 154-158
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

侯景严,宋焕生,梁浩翔,贾金明,戴喆.基于前后端交互的人脸识别系统.计算机系统应用,2020,29(10):89-96

复制
分享
文章指标
  • 点击次数:1287
  • 下载次数: 2237
  • HTML阅读次数: 2735
  • 引用次数: 0
历史
  • 收稿日期:2020-02-23
  • 最后修改日期:2020-03-27
  • 在线发布日期: 2020-09-30
  • 出版日期: 2020-10-15
文章二维码
您是第11304572位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号