基于神经网络的EAST密度极限破裂预测
作者:
基金项目:

国家重点研发计划(2016YFA0400600, 2016YFA0400601, 2016YFA0400602); 国家自然科学基金(11775219, 11575186); 中国科学院合肥物质科学研究院院长基金(YZJJ2020QN11)


Density Limit Disruption Prediction of EAST Based on Neural Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了对全超导托卡马克核聚变实验装置(EAST)密度极限破裂进行预测, 根据密度极限破裂的基本特征从2014到2019年放电数据中筛选出972炮密度极限破裂炮, 选取了13种诊断信号为特征作为输入, 分别由多层感知机(MLP)和长短时记忆网络(LSTM)为模型、以破裂概率为模型输出建立破裂预测器对密度极限破裂进行预测实验. 结果表明: 对密度极限破裂炮, 在不同的预警时间下, LSTM的成功预测率(95%)均高于MLP的成功预测率(85%); 而对于非破裂炮, LSTM和MLP的错误预测率相近(8%). LSTM对密度极限破裂的预测性能较MLP有较大的提高. 说明利用神经网络进行EAST密度极限破裂预测以及提高破裂避免和缓解系统响应性能的可行性.

    Abstract:

    To solve the blank of current research on the prediction of density limit disruption of EAST, 972 density limit disruptive pulses selected as data sets from the EAST’s 2014 to 2019 discharge. 13 diagnostic signals were chosen as features. Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM) was used as models and the disruption risk was used as output to build the predictors. The experimental results show that for density limit disruptive pulses, under different alarming times, the successful prediction rate of LSTM (around 95%) is higher than that of MLP (85%), and for non-disruptive pulses, the false prediction rate is around 8% for both MLP and LSTM. The performance of LSTM has great improvement than MLP, shows the feasibility of building EAST density limit disruption system with neural networks and improving the response performance of disruption avoidance and mitigation system.

    参考文献
    [1] 柴文婷, 肖炳甲, 袁旗平, 等. EAST破裂炮的判定与波形显示. 计算机系统应用, 2018, 27(5): 156-160. [doi: 10.15888/j.cnki.csa.006333
    [2] Schuller FC. Disruptions in tokamaks. Plasma Physics and Controlled Fusion, 1995, 37(11A): A135-A162. [doi: 10.1088/0741-3335/37/11A/009
    [3] Hender TC, Wesley JC, Bialek J, et al. MHD stability, operational limits and disruptions. Nuclear Fusion, 2007, 47(6): S128-S202. [doi: 10.1088/0029-5515/47/6/S03
    [4] Campbell D. 6 Magnetic confinement fusion: Tokamak. In: Heinloth K, ed. Nuclear Energy. Berlin: Springer, 2005.
    [5] Chen DL, Shen B, Granetz RS, et al. Disruption mitigation with high-pressure helium gas injection on EAST tokamak. Nuclear Fusion, 2018, 58(3): 036003. [doi: 10.1088/1741-4326/aaa139
    [6] Greenwald M. Density limits in Toroidal plasmas. Plasma Physics and Controlled Fusion, 2002, 44(8): R27-R53. [doi: 10.1088/0741-3335/44/8/201
    [7] Zheng XW, Li JG, Hu JS, et al. Density limits investigation and high density operation in EAST tokamak. Plasma Physics and Controlled Fusion, 2016, 58(5): 055013. [doi: 10.1088/0741-3335/58/5/055013
    [8] Sengupta A, Ranjan P. Prediction of density limit disruption boundaries from diagnostic signals using neural networks. Nuclear Fusion, 2002, 41(5): 487. [doi: 10.1088/0029-5515/41/5/302
    [9] Wang SY, Chen ZY, Huang DW, et al. Prediction of density limit disruptions on the J-TEXT tokamak. Plasma Physics and Controlled Fusion, 2016, 58(5): 055014. [doi: 10.1088/0741-3335/58/5/055014
    [10] Zheng W, Hu FR, Zhang M, et al. Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak. Nuclear Fusion, 2018, 58(5): 056016. [doi: 10.1088/1741-4326/aaad17
    [11] ITER Physics Basis Editors. ITER physics expert group chairs and co-chairs and ITER joint central team and physics integration unit. Nuclear Fusion, 1999, 39(12): 2137-2174. [doi: 10.1088/0029-5515/39/12/301
    [12] Cannas B, Fanni A, Murari A, et al. Automatic disruption classification based on manifold learning for real-time applications on JET. Nuclear Fusion, 2013, 53(9): 093023. [doi: 10.1088/0029-5515/53/9/093023
    [13] Cannas B, Fanni A, Marongiu E, et al. Disruption forecasting at JET using neural networks. Nuclear Fusion, 2004, 44(1): 68-76. [doi: 10.1088/0029-5515/44/1/008
    [14] Cannas B, Fanni A, Sonato P, et al. A prediction tool for real-time application in the disruption protection system at JET. Nuclear Fusion, 2007, 47(11): 1559-1569. [doi: 10.1088/0029-5515/47/11/018
    [15] Rattá GA, Vega J, Murari A. Improved feature selection based on genetic algorithms for real time disruption prediction on JET. Fusion Engineering and Design, 2012, 87(9): 1670-1678. [doi: 10.1016/j.fusengdes.2012.07.002
    [16] Rattá GA, Vega J, Murari A, et al. An advanced disruption predictor for JET tested in a simulated real-time environment. Nuclear Fusion, 2010, 50(2): 025005. [doi: 10.1088/0029-5515/50/2/025005
    [17] Vega J, Dormido-Canto S, López JM, et al. Results of the JET real-time disruption predictor in the ITER-like wall campaigns. Fusion Engineering and Design, 2013, 88(6-8): 1228-1231. [doi: 10.1016/j.fusengdes.2013.03.003
    [18] 马瑞, 王爱科, 王灏. 用人工神经网络预测HL-2A等离子体放电破裂. 核聚变与等离子体物理, 2010, 30(1): 37-41. [doi: 10.16568/j.0254-6086.2010.01.003
    [19] Cannas B, Fanni A, Pautasso G, et al. An adaptive real-time disruption predictor for ASDEX upgrade. Nuclear Fusion, 2010, 50(7): 075004. [doi: 10.1088/0029-5515/50/7/075004
    [20] Rea C, Granetz RS, Montes K, et al. Disruption prediction investigations using machine learning tools on DIII-D and Alcator C-Mod. Plasma Physics and Controlled Fusion, 2018, 60(8): 084004. [doi: 10.1088/1361-6587/aac7fe
    [21] Montes KJ, Rea C, Granetz RS, et al. Machine learning for disruption warnings on Alcator C-Mod, DIII-D, and EAST. Nuclear Fusion, 2019, 59(9): 096015. [doi: 10.1088/1741-4326/ab1df4
    [22] 谭胜均, 张洋, 叶民友, 等. EAST上由垂直不稳定性引发破裂的分析与预测. 核聚变与等离子体物理, 2019, 39(2): 104-111. [doi: 10.16568/j.0254-6086.201902002
    [23] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444. [doi: 10.1038/nature14539
    [24] Graves A. Long short-term memory. In: Graves A, ed. Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer, 2012. 37-45.
    [25] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735-1780. [doi: 10.1162/neco.1997.9.8.1735
    [26] Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: The MIT Press, 2016.
    [27] 唐剑寅, 肖炳甲, 袁旗平. 对EAST PCS系统延迟的分析与改善. 计算机系统应用, 2018, 27(11): 115-119. [doi: 10.15888/j.cnki.csa.006606
    [28] De Vries PC, Pautasso G, Humphreys D, et al. Requirements for triggering the ITER disruption mitigation system. Fusion Science and Technology, 2016, 69(2): 471-484. [doi: 10.13182/FST15-176
    相似文献
    引证文献
引用本文

陈俊杰,胡文慧,肖建元,郭笔豪,肖炳甲.基于神经网络的EAST密度极限破裂预测.计算机系统应用,2020,29(11):21-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-04
  • 最后修改日期:2020-04-28
  • 在线发布日期: 2020-10-30
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号