基于CTD-BLSTM的医疗领域中文命名实体识别模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(71501172); 浙江省自然科学基金(LY15G010010)


Chinese Named Entity Recognition in Medical Field Using CTD-BLSTM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为在模型训练期间保留更多信息, 用预训练词向量和微调词向量对双向长短期记忆网络(Bi-LSTM)神经模型进行扩展, 并结合协同训练方法来应对医疗文本标注数据缺乏的情况, 构建出改进模型CTD-BLSTM (Co-Training Double word embedding conditioned Bi-LSTM)用于医疗领域的中文命名实体识别. 实验表明, 与原始BLSTM与BLSTM-CRF相比, CTD-BLSTM模型在语料缺失的情况下具有更高的准确率和召回率, 能够更好地支持医疗领域知识图谱的构建以及知识问答系统的开发.

    Abstract:

    In order to retain more characteristic information in the training process, this study uses pre-training word vector and fine-tuning word vector to extend Bi-directional Long Short-Term Memory network (Bi-LSTM), and combines the co-training semi-supervision method to deal with the feature of sparse annotated text in the medical field. An improved model of Co-Training Double word embedding conditioned Bi-LSTM (CTD-BLSTM) is further proposed for Chinese named entity recognition. Experiments show that compared with the original BLSTM and BLSTM-CRF, the CTD-BLSTM model has higher accuracy and recall rate in the absence of corpora, the proposed method can better support the construction of medical knowledge graph and the development of knowledge answering system.

    参考文献
    相似文献
    引证文献
引用本文

祝锡永,吴炀,刘崇.基于CTD-BLSTM的医疗领域中文命名实体识别模型.计算机系统应用,2020,29(8):173-178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-22
  • 最后修改日期:2020-02-27
  • 录用日期:
  • 在线发布日期: 2020-07-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号