改进的基于增强型HOG的行人检测算法
作者:
基金项目:

国家重点研发计划重点专项(2018YFB1004901);国家自然科学基金(31771224,60702069);浙江省自然科学基金(LY17C090011)


Improved Pedestrian Detection Method Based on Enhanced HOG
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    行人检测在人工智能系统、车辆辅助驾驶系统和智能监控等领域具有重要的应用,是当前的研究热点.针对HOG特征不明显、支持向量机(SVM)分类器计算复杂度高,导致识别率低和检测速度慢的问题,本文提出了一种改进的基于增强型HOG的行人检测算法.该算法首先预处理原始图像并提取其HOG特征,然后增强该特征生成增强型HOG,经XGBoost分类器进行行人检测.在INRIA数据集上进行测试,实验结果表明所提算法识别率高达95.49%,有效地提高了行人检测性能.

    Abstract:

    Pedestrian detection is a current research hotspot, which has important applications in the fields of artificial intelligence system, vehicle assistant driving system, and intelligent monitoring. In the process of pedestrian detection based on HOG feature, the HOG feature is not obvious, the SVM classifier has high computational complexity, resulting in low recognition rate and high missed detection rate, this study proposes an improved enhanced HOG feature combined with the eXtreme Gradient Boosting (XGBoost) classifier for pedestrian detection. Firstly, the original image is preprocessed to get saliency map and HOG features. Then, the contrast of HOG features is enhanced and the pedestrian detection analysis is carried out with XGBoost classifier. Tested with the INRIA dataset, the experimental results show that the proposed algorithm has a significant improvement in recognition rate and detection speed.

    参考文献
    [1] 苏松志, 李绍滋, 陈淑媛, 等. 行人检测技术综述. 电子学报, 2012, 40(4): 814-820. [doi: 10.3969/j.issn.0372-2112.2012.04.031
    [2] 宋婉娟, 张剑. 融合回归网络和多尺度特征表示的实时行人检测. 电子测量与仪器学报, 2018, 32(7): 15-20
    [3] 李俊杰, 刘成林, 朱明. 基于多任务CNN的监控视频中异常行人快速检测. 计算机系统应用, 2018, 27(11): 78-83. [doi: 10.15888/j.cnki.csa.006607
    [4] Dalal N, Triggs B. Histograms of oriented gradients for human detection. Proceedings of 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). San Diego, CA, USA. 2005. 886-893.
    [5] Maldonado S, López J. Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for SVM classification. Applied Soft Computing, 2018, 67: 94-105. [doi: 10.1016/j.asoc.2018.02.051
    [6] 陈锐, 王敏, 陈肖. 基于PCA降维的HOG与LBP融合的行人检测. 信息技术, 2015, (2): 101-105
    [7] Aït-Sahalia Y, Xiu DC. Principal component analysis of high-frequency data. Journal of the American Statistical Association, 2019, 114(525): 287-303. [doi: 10.1080/01621459.2017.1401542
    [8] Xiao L, Zhang YJ, Wang Q, et al. Improved local texture features for pedestrian detection. Proceedings of the IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). Chongqing, China. 2018. 60-65.
    [9] Zhang PB, Yang ZX. A novel AdaBoost framework with robust threshold and structural optimization. IEEE Transactions on Cybernetics, 2018, 48(1): 64-76. [doi: 10.1109/TCYB.2016.2623900
    [10] Walk S, Majer N, Schindler K, et al New features and insights for pedestrian detection. Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA. 2010. 1030-1037.
    [11] 李盈盈, 李菲菲, 陈虬. 基于改进HOG共生概率特征的行人检测算法. 电子科技, 2018, 31(9): 4-8
    [12] Chen PY, Huang CC, Lien CY, et al. An efficient hardware implementation of HOG feature extraction for human detection. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 656-662. [doi: 10.1109/TITS.2013.2284666
    [13] 龚露鸣, 徐美华, 刘冬军. 基于混合高斯和HOG + SVM的行人检测模型. 上海大学学报(自然科学版), 2018, 24(3): 341-351
    [14] 陈恩加, 唐向宏, 傅博文. Faster R-CNN行人检测与再识别为一体的行人检索算法. 计算机辅助设计与图形学学报, 2019, 31(2): 332-339
    [15] Tian YL, Luo P, Wang XG, et al. Deep learning strong parts for pedestrian detection. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015. 1904-1912.
    [16] Ouyang WL, Zhou H, Li HS, et al. Jointly learning deep features, deformable parts, occlusion and classification for pedestrian detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8): 1874-1887. [doi: 10.1109/TPAMI.2017.2738645
    [17] 王琳, 卫晨, 李伟山, 等. 结合金字塔池化模块的YOLOv2的井下行人检测. 计算机工程与应用, 2019, 55(3): 133-139. [doi: 10.3778/j.issn.1002-8331.1710-0236
    [18] 杨金锋, 师一华, 熊兴隆. 光照处理中改进的Gamma矫正方法. 中国民航学院学报, 2006, 24(4): 39-42
    [19] 储清翠, 王华彬, 陶亮. 图像的局部自适应Gamma校正. 计算机工程与应用, 2015, 51(7): 189-193, 208. [doi: 10.3778/j.issn.1002-8331.1305-0193
    [20] Chen TQ, Guestrin C. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA. 2016. 785-794.
    [21] Chen WB, Fu K, Zuo JW, et al. Radar emitter classification for large data set based on weighted-xgboost. IET Radar, Sonar & Navigation, 2017, 11(8): 1203-1207
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李文书,韩洋,阮梦慧,王志骁.改进的基于增强型HOG的行人检测算法.计算机系统应用,2020,29(10):199-204

复制
分享
文章指标
  • 点击次数:1028
  • 下载次数: 2271
  • HTML阅读次数: 1989
  • 引用次数: 0
历史
  • 收稿日期:2020-02-14
  • 最后修改日期:2020-03-13
  • 在线发布日期: 2020-09-30
  • 出版日期: 2020-10-15
文章二维码
您是第11275904位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号