摘要:垃圾分类作为资源回收利用的重要环节之一, 可以有效地提高资源回收利用效率, 进一步减轻环境污染带来的危害. 随着现代工业逐步智能化, 传统的图像分类算法已经不能满足垃圾分拣设备的要求. 本文提出一种基于卷积神经网络的垃圾图像分类模型(Garbage Classification Network, GCNet). 通过构建注意力机制, 模型完成局部和全局的特征提取, 能够获取到更加完善、有效的特征信息; 同时, 通过特征融合机制, 将不同层级、尺寸的特征进行融合, 更加有效地利用特征, 避免梯度消失现象. 实验结果证明, GCNet在相关垃圾分类数据集上取得了优异的结果, 能够有效地提高垃圾识别精度.