基于动态加权组合模型的ATM现金预测方法
作者:

ATM Cash Forecasting Method Based on Dynamic Weighted Combination Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文提出了一种基于动态加权组合模型的智能现金预测方法, 可以对银行ATM设备的日常现金用量进行精准预测, 为日常现金调拨管理提供决策依据. 与以往使用的单算法预测不同, 本文对银行业务、交易流水与设备等特性进行分析, 据此组合4种单一机器学习模型, 提出并实现基于动态加权组合模型的智能算法. 该算法可以为银行现金用量管理提供更智能、更精准、更高效的预测手段, 有效压降现金库存总量与回钞率, 提升现金运用率. 此方法已在广东、重庆、江西、山西、北京等地区使用, 并取得良好效果.

    Abstract:

    A wise cash forecasting method based on a dynamic weighted combination model is proposed in this study, to precisely predict the daily cash consumption of ATM equipments so as to make a better decision for daily cash transfer management. Different from single-algorithm prediction used in the past, with analyzing characteristics of banking business, transaction flow, and equipment, etc., an intelligent algorithm based on a dynamic weighted combination model that combining 4 single machine learning models, is proposed and implemented in this study. This algorithm provides a more intelligent, more precise, and more efficient forecasting method for the management of bank cash consumption, effectively reduces the total amount of cash inventory and the rate of cash return, and improves the utilization rate of cash. This method has been used in Guangdong, Chongqing, Jiangxi, Shanxi, Beijing, and other areas with sound results.

    参考文献
    [1] 刘艳杰. ATM现金流预测研究现状与展望. 科技经济导刊, 2018, 26(24): 11–12
    [2] Simutis R, Dilijonas D, Bastina L, et al. A flexible neural network for ATM cash demand forecasting. Proceedings of the 6th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics. Stevens Point, WI, USA. 2007. 162–165.
    [3] Acuña G, Ramirez C, Curilem M. Comparing NARX and NARMAX models using ANN and SVM for cash demand forecasting for ATM. Proceedings of 2012 International Joint Conference on Neural Networks. Brisbane, QLD, Australia. 2012. 1–6.
    [4] Kumar PC, Walia E. Cash forecasting: An application of artificial neural networks in finance. International Journal of Computer Science & Applications, 2006, 3(1): 61–77
    [5] Venkatesh K, Ravi V, Prinzie A, et al. Cash demand forecasting in ATMs by clustering and neural networks. European Journal of Operational Research, 2014, 232(2): 383–392. [doi: 10.1016/j.ejor.2013.07.027
    [6] 许琪. 基于支持向量机的ATM机现金需求预测研究[硕士学位论文]. 杭州: 浙江工业大学, 2009.
    [7] 刘艳杰. 基于GA-SVR的ATM现金需求量预测[硕士学位论文]. 广州: 暨南大学, 2016.
    [8] 伍娜. 基于改进遗传神经网络的ATM现金预测的研究[硕士学位论文]. 广州: 暨南大学, 2016.
    [9] 韦金香, 张建同. 银行ATM设备业务总量的时序特征分析及预测. 上海管理科学, 2017, 39(6): 25–28. [doi: 10.3969/j.issn.1005-9679.2017.06.005
    [10] 闭小梅, 闭瑞华. KNN算法综述. 科技创新导报, 2009, (14): 37. [doi: 10.3969/j.issn.1674-098X.2009.14.024
    [11] 蔡永川, 李琦. 基于随机森林算法的PM2.5浓度快速预测模型. 环境工程, 2018, 36(S1): 100–104, 129
    [12] Chen TQ, He T, Benesty M, et al. xgboost: Extreme gradient boosting. https://pbil.univ-lyon1.fr/CRAN/web/packages/xgboost/, 2016.
    [13] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Proceedings of the 9th International Conference on Artificial Neural Networks ICANN ’99. Edinburgh, UK. 1999. 850–855.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜姗,蔡为彬.基于动态加权组合模型的ATM现金预测方法.计算机系统应用,2020,29(8):24-30

复制
分享
文章指标
  • 点击次数:1364
  • 下载次数: 3117
  • HTML阅读次数: 1787
  • 引用次数: 0
历史
  • 收稿日期:2020-01-20
  • 最后修改日期:2020-02-25
  • 在线发布日期: 2020-07-31
  • 出版日期: 2020-08-15
文章二维码
您是第11274392位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号