基于改进Deeplab V3+网络的语义分割
作者:

Semantic Segmentation Based on Improved Deeplab V3+ Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    深度学习的语义分割在计算机视觉领域中有非常广阔的发展前景,但许多分割效果较好网络模型占用内存大和处理单张图片耗时长.针对这个问题,把Deeplab V3+模型的骨干网(ResNet101)的瓶颈单元设计为1D非瓶颈单元,且对空洞空间金字塔池化模块(Atrous Spatial Pyramid Pooling,ASPP)的卷积层进行分解.该算法能大幅度降低Deeplab V3+网络的参数量,提高网络推理速度.基于PASCAL VOC 2012数据集进行对比实验,实验结果显示改进网络模型拥有更快的处理速度和更优的分割效果,且消耗更少的内存.

    Abstract:

    Semantic segmentation of deep learning has a very broad development prospect in the field of computer vision, but many network models with better segmentation effects take up a lot of memory and take a long time to process a single picture. In response to this problem, we replace the bottleneck unit of the Deeplab V3+ model backbone network (ResNet101) with a 1D non-bottleneck unit, and decompose the convolutional layer of the Atrous Spatial Pyramid Pooling (ASPP) module. The algorithm can greatly reduce the parameter amount of Deeplab V3+ network and accelerate the speed of network inference. Based on the PASCAL VOC 2012 dataset, the experimental results show that the improved network model has faster speed and better segmentation, and takes up less memory space.

    参考文献
    [1] 计梦予, 袭肖明, 于治楼. 基于深度学习的语义分割方法综述. 信息技术与信息化, 2017, (10): 137-140. [doi: 10.3969/j.issn.1672-9528.2017.10.037
    [2] 肖朝霞, 陈胜. 图像语义分割问题研究综述. 软件导刊, 2018, 17(8): 6-8, 12
    [3] Arbeláez P, Hariharan B, Gu CH, et al. Semantic segmentation using regions and parts. Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA. 2012. 3378-3385.
    [4] Lu ZW, Fu ZY, Xiang T, et al. Learning from weak and noisy labels for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(3): 486-500. [doi: 10.1109/TPAMI.2016.2552172
    [5] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [doi: 10.1109/TPAMI.2016.2572683
    [6] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich, Germany. 2015. 234-241.
    [7] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [doi: 10.1109/TPAMI.2016.2644615
    [8] de Oliveira Junior LA, Medeiros HR, Macêdo D, et al. SegNetRes-CRF: A deep convolutional encoder-decoder architecture for semantic image segmentation. Proceedings of 2018 International Joint Conference on Neural Networks. Rio de Janeiro, Brazil. 2018. 1-6.
    [9] Zhao HS, Shi JP, Qi XJ, et al. Pyramid scene parsing network. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 6230-6239.
    [10] Lin GS, Milan A, Shen CH, et al. RefineNet: Multi-path refinement networks for high-resolution semantic segmentation. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 5168-5177.
    [11] Chen LC, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs. Proceedings of the 3rd International Conference on Learning Representations. San Diego, CA, USA. 2014. 357-361.
    [12] Chen LC, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [doi: 10.1109/TPAMI.2017.2699184
    [13] Chen LC, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation. arXiv: 1706.05587, 2017.
    [14] Chen LC, Zhu YK, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari V, Hebert M, Sminchisescu C, et al, eds. Computer Vision (ECCV 2018). Cham: Springer, 2018. 833-851.
    [15] Alvarez J, Petersson L. DecomposeMe: Simplifying ConvNets for end-to-end learning. arXiv: 1606.05426, 2016.
    [16] Na T, Mukhopadhyay S. Speeding up convolutional neural network training with dynamic precision scaling and flexible multiplier-accumulator. Proceedings of 2016 International Symposium on Low Power Electronics and Design. San Francisco, CA, USA. 2016. 58-63.
    [17] Sironi A, Tekin B, Rigamonti R, et al. Learning separable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 94-106. [doi: 10.1109/TPAMI.2014.2343229
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

席一帆,孙乐乐,何立明,吕悦.基于改进Deeplab V3+网络的语义分割.计算机系统应用,2020,29(9):178-183

复制
分享
文章指标
  • 点击次数:1689
  • 下载次数: 5087
  • HTML阅读次数: 3356
  • 引用次数: 0
历史
  • 收稿日期:2019-12-12
  • 最后修改日期:2020-02-08
  • 在线发布日期: 2020-09-07
  • 出版日期: 2020-09-15
文章二维码
您是第12459985位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号