基于多流卷积神经网络的行为识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61374022)


Behavior Recognition Based on Multi-Stream Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人体行为识别与人体姿态有很强的相关性, 由于许多公开的行为识别的数据集并未提供相关姿态数据, 因此很少有将姿态数据进行训练并与其它模态进行融合的识别方法. 针对当今主流基于深度学习的人体行为识别方法采用RGB与光流融合的现状, 提出一种融合人体姿态特征的多流卷积神经网络人体行为识别算法. 首先, 用姿态估计算法从包含人的静态图片生成人体关键点数据, 并对关键点连接构建姿态; 其次, 分别将RGB、光流、姿态数据对多流卷积神经网络进行训练, 并进行分数融合; 最后, 在UCF101与HMDB51数据集进行了大量的消融, 识别精度等方面的实验研究. 实验结果表明, 融合了姿态图像的多流卷积神经网络在UCF101与HMDB51数据集的实验精度分别提高了2.3%和3.1%. 实验结果验证了提出算法的有效性.

    Abstract:

    Human behavior recognition has a strong correlation with human body poses, but many open datasets for behavior recognition do not provide relevant data of poses. As a result, few recognition methods train pose data and fuse with other modalities. Current mainstream behavior recognition methods based on deep learning fuse RGB images with optical flow. This study proposes a behavior recognition algorithm based on a multi-stream convolutional neural network, which integrates human body poses. Firstly, the pose estimation algorithm is used to generate the data of key points on the human body from the static pictures containing people, and the poses are constructed by connecting the key points. Secondly, RGB, optical flow, and pose data are respectively trained on the multi-stream convolutional neural network, and the scores are fused. Finally, substantial experimental research is conducted on ablation and recognition accuracy in UCF101 and HMDB51 datasets. The experimental results reveal that the experimental precision of the multi-stream convolutional neural network integrated with pose images increases by 2.3% and 3.1% in the UCF101 and HMDB51 datasets, respectively, proving the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

周波,李俊峰.基于多流卷积神经网络的行为识别.计算机系统应用,2021,30(8):118-125

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-08
  • 最后修改日期:2020-02-08
  • 录用日期:
  • 在线发布日期: 2021-08-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号