基于扩展Bcp指数的领域主题发展态势可视分析
作者:
基金项目:

中国科学院“十三五”信息化专项课题(XXH13504)


Visual Analysis for Development Situation of Research Topics Based on Extended Bcp Index
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过对已发表论文的分析, 掌握研究领域的发展状况, 对研究人员具有重要意义. 面向此类需求, 提出一种基于扩展Bcp指数的领域主题发展态势可视分析方法. 首先, 从论文的标题、摘要以及作者提供的关键字中自动提取包含词组类型的关键词集合. 提取这些关键词之间的共现关系. 根据这些关键词使用LDA算法进行提取主题. 然后, 提出一种扩展Bcp指数来度量关键词的发展状态, 并据此对关键词和论文进行分类, 以确定发展状态类型. 基于此方法, 设计并实现了一个由需求驱动的领域主题发展态势可视分析工具VISExplorer. 该系统可以展现领域主题分布和发展趋势、可以按主题推荐高质量文章、可以浏览不同主题中的高产出作者和高引用作者. 最后, 以可视化领域为例, 根据1990年至2018年在可视化领域顶级会议IEEE VIS上发表的论文, 对VISExplorer进行了实际案例应用, 并通过用户反馈证明了方法的实用性和有效性.

    Abstract:

    It is of great significance for researchers to master the development of research field through the analysis of published papers. In order to meet this requirement, a visual analysis method based on extended Bcp index was proposed. First of all, keywords containing phrases are automatically extracted from the title, abstract, and author provided keywords. Then co-occurrence relationship between these keywords was extracted. According to these keywords, LDA algorithm was used to extract topics. Then, an extended Bcp index was proposed to measure the development state of keywords. Based on this method, a visual analytic tool VISExplorer was designed and implemented. VISExplorer can show the distribution and development trend of domain topics, recommend high-quality papers, and browse top authors. Finally, taking the domain of visualization as an example, VISExplorer was conducted in real cases of publications on IEEE VIS Conference from 1990 to 2018, and the usefulness and effectiveness are proved by user’s feedbacks.

    参考文献
    [1] Isenberg P, Isenberg T, Sedlmair M, et al. Visualization as seen through its research paper keywords. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(1): 771-780. [doi: 10.1109/TVCG.2016.2598827
    [2] Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022
    [3] Callon M, Courtial JP, Laville F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 1991, 22(1): 155-205. [doi: 10.1007/BF02019280
    [4] Chuang J, Gupta S, Manning CD, et al. Topic model diagnostics: Assessing domain relevance via topical alignment. Proceedings of the 30th International Conference on International Conference on Machine Learning. Atlanta, GA, USA. 2013.612-620.
    [5] He Q. Knowledge discovery through co-word analysis. Library Trends, 1999, 48(1): 133-59
    [6] Law J, Bauin S, Courtial JP, et al. Policy and the mapping of scientific change: A co-word analysis of research into environmental acidification. Scientometrics, 1988, 14(3-4): 251-264
    [7] Kostoff RN. Co-word analysis. Bozeman B, Melkers J. Evaluating R&D Impacts: Methods and Practice. Boston: Springer, 1993.63-78.
    [8] Coulter N, Monarch I, Konda S. Software engineering as seen through its research literature: A study in co-word analysis. Journal of the American Society for Information Science, 1998, 49(13): 1206-1223. [doi: 10.1002/(SICI)1097-4571(1998)49:13<1206::AID-ASI7>3.0.CO;2-F
    [9] Hoonlor A, Szymanski BK, Zaki MJ. Trends in computer science research. Communications of the ACM, 2013, 56(10): 74-83. [doi: 10.1145/2500892
    [10] Liu Y, Goncalves J, Ferreira D, et al. CHI 1994-2013: Mapping two decades of intellectual progress through co-word analysis. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Toronto, ON, Canada. 2014. 3553-3562.
    [11] Almanza M, Chierichetti F, Panconesi A, et al. A reduction for efficient LDA topic reconstruction. Advances in Neural Information Processing Systems. Montreal, QB, Canada. 2018. 7869-7879.
    [12] Newman D, Noh Y, Talley E, et al. Evaluating topic models for digital libraries. Proceedings of the 10th Annual Joint Conference on Digital Libraries. New York, NY, USA. 2010. 215-224.
    [13] Taddy M. On estimation and selection for topic models. Proceedings of the 15th International Conference on Artificial Intelligence and Statistics. La Palma, Spain. 2012. 1184-1193.
    [14] Chuang J, Manning CD, Heer J. Termite: Visualization techniques for assessing textual topic models. Proceedings of the International Working Conference on Advanced Visual Interfaces. New York, NY, USA. 2012. 74-77.
    [15] Sievert C, Shirley K. LDAvis: A method for visualizing and interpreting topics. Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces. Baltimore, MD, USA. 2014. 63-70.
    [16] Ke Q, Ferrara E, Radicchi F, et al. Defining and identifying sleeping beauties in science. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24): 7426-7431. [doi: 10.1073/pnas.1424329112
    [17] Van Raan AFJ. Dormitory of physical and engineering sciences: Sleeping beauties may be sleeping innovations. PLoS One, 2015, 10(10): e0139786. [doi: 10.1371/journal.pone.0139786
    [18] Van Raan AFJ. Sleeping beauties in science. Scientometrics, 2004, 59(3): 467-472. [doi: 10.1023/B:SCIE.0000018543.82441.f1
    [19] Du J, Wu YS. A parameter-free index for identifying under-cited sleeping beauties in science. Scientometrics, 2018, 116(2): 959-971. [doi: 10.1007/s11192-018-2780-0
    [20] Görg C, Liu ZC, Kihm J, et al. Combining computational analyses and interactive visualization for document exploration and sensemaking in jigsaw. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10): 1646-1663. [doi: 10.1109/TVCG.2012.324
    [21] Stasko J, Choo J, Han Y, et al. Citevis: Exploring conference paper citation data visually. Posters of IEEE InfoVis. Atlanta, GA, USA. 2013. 2.
    [22] Isenberg P, Heimerl F, Koch S, et al. Vispubdata. org: A metadata collection about IEEE visualization (VIS) publications. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(9): 2199-2206
    [23] Latif S, Liu D, Beck F. Exploring interactive linking between text and visualization. EuroVis (Short Papers). Short Papers, Brno, Czech Republic. 2018. 91-94.
    [24] Guo H, Laidlaw DH. Topic-based exploration and embedded visualizations for research idea generation. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(3): 1592-1607. [doi: 10.1109/TVCG.2018.2873011
    [25] Federico P, Heimerl F, Koch S, et al. A survey on visual approaches for analyzing scientific literature and patents. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(9): 2179-2198. [doi: 10.1109/TVCG.2016.2610422
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王杨,余敏槠,单桂华,田东,陆忠华.基于扩展Bcp指数的领域主题发展态势可视分析.计算机系统应用,2020,29(7):56-69

复制
分享
文章指标
  • 点击次数:1243
  • 下载次数: 2581
  • HTML阅读次数: 1286
  • 引用次数: 0
历史
  • 收稿日期:2019-12-23
  • 最后修改日期:2020-01-20
  • 在线发布日期: 2020-07-04
  • 出版日期: 2020-07-15
文章二维码
您是第11208384位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号