基于图神经网络的配电网故障预测
作者:
基金项目:

国家科技重大专项(2017ZX01030-201)


Accident Prediction of Power Distribution Network Based on Graph Neural Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在实际应用场景的配电网故障占电网总故障的80%以上,并且配电网故障的预测一直以来都是比较困难的课题.本文在国家电网提出“泛在物联”的号召下,分析了学者们在此问题上的研究成果后,结合图神经网络的思想提出了一种基于图神经网络的配电网故障预测方法.参考了现在常用的图神经网络设计框架,详细的设计了节点信息汇集函数、预测函数和损失函数,并根据算法流程测试选定了合理的深度参数.算法充分考虑了相连节点间的互相影响,使用真实的电网运行数据对在该课题上常用的其它两种算法的横向比较,实验表明算法在精确度上提高了3.0%,并具有更强的鲁棒性.

    Abstract:

    Power distribution network accident in actual application scenarios account for more than 80% of total grid accident, and the prediction of power distribution network accident has always been a difficult issue. This study, under the call of “Ubiquitous IoT” proposed by the State Grid, analyzes the research results of scholars on this issue, and proposes an accident prediction method for power distribution network based on graph neural network with the idea of graph neural network. Referring to the commonly used graph neural network design framework, the node information aggregation function, prediction function, and loss function are designed in detail, and reasonable depth parameters are selected according to the algorithm flow test. The algorithm fully considers the mutual influence between connected nodes, and uses the real grid operation data to compare the two other algorithms commonly used in this field. Experiments show that the proposed algorithm improves the accuracy by 3.0% and is more robust.

    参考文献
    [1] 郑晨玲, 朱革兰. 基于贝叶斯估计的配电网智能分布式故障区段定位算法. 电网技术, 2020, 44(4): 1561-1567
    [2] 刘科研, 吴心忠, 石琛, 等. 基于数据挖掘的配电网故障风险预警. 电力自动化设备, 2018, 38(5): 148-153
    [3] 张稳, 盛万兴, 刘科研, 等. 计及天气因素相关性的配电网故障风险等级预测方法. 电网技术, 2018, 42(8): 2391-2398
    [4] Scarselli F, Gori M, Tsoi AC, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. [doi: 10.1109/TNN.2008.2005605
    [5] Zhou J, Cui GQ, Zhang ZY, et al. Graph neural networks: A review of methods and applications. arXiv: 1812.08434, 2018.
    [6] Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large graphs. arXiv: 1706.02216, 2017.
    [7] Wu ZH, Pan SR, Chen FW, et al. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems.
    [8] Cui P, Wang X, Pei J, et al. A survey on network embedding. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(5): 833-852. [doi: 10.1109/TKDE.2018.2849727
    [9] Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: Methods and applications. IEEE Data Engineering Bulletin, 2017, 40(3): 52-74
    [10] Zhang DK, Yin J, Zhu XQ, et al. Network representation learning: A survey. IEEE transactions on Big Data, 2020, 6(1): 3-28. [doi: 10.1109/TBDATA.2018.2850013
    [11] Cai HY, Zheng VW, Chang KCC. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637. [doi: 10.1109/TKDE.2018.2807452
    [12] Battaglia P, Pascanu R, Lai M, et al. Interaction networks for learning about objects, relations and physics. Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain. 2016. 4502-4510.
    [13] Atwood J, Towsley D. Diffusion-convolutional neural networks. Annual Conference on Neural Information Processing Systems 2016. Barcelona, Spain. 2016. 1993-2001.
    [14] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. Proceedings of the 5th International Conference on Learning Representations. Toulon, France. 2017.
    [15] Sanchez-Gonzalez A, Heess N, Springenberg JT, et al. Graph networks as learnable physics engines for inference and control. arXiv: 1806.01242, 2018.
    [16] Beck D, Haffari G, Cohn T. Graph-to-sequence learning using gated graph neural networks. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia. 2018. 273-283.
    [17] Schlichtkrull M, Kipf TN, Bloem P, et al. Modeling relational data with graph convolutional networks. Proceedings of the 15th International Conference. Heraklion, Greece. 2018. 593-607.
    [18] Zhang ZW, Cui P, Zhu WW. Deep learning on graphs: A survey. arXiv: 1812.04202, 2018.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨华,李喜旺,司志坚,张晓.基于图神经网络的配电网故障预测.计算机系统应用,2020,29(9):131-135

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-06
  • 最后修改日期:2020-01-22
  • 在线发布日期: 2020-09-07
  • 出版日期: 2020-09-15
文章二维码
您是第12459985位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号