摘要:自杀是当今社会严重的公共卫生问题, 对自杀预防工作进行深入研究有着极大的社会意义. 该文对基于微博文本的自杀风险评估方法进行了研究. 针对微博文本的特点, 为解决当前神经网络单一结构在预测精度提升上的瓶颈问题, 本文提出了一种混合架构的神经网络模型nC-BiLSTM, 并将其应用于微博文本自杀风险识别. 该模型利用多路不同卷积核的卷积层提取局部特征信息, 同时使用双向长短期记忆网络层提取句子的上下文语义特征信息, 实验表明nC-BiLSTM模型的识别精准率、召回率、F值均优于其它模型. 该研究成果可应用到自杀预防的早期干预中.