摘要:社区结构是复杂网络的重要特性之一, 基于模块度的复杂网络社区发现问题是一个NP难度的组合优化问题, 常用启发式算法求解. 最近出现的Jaya算法是求解连续优化问题的一种简单有效的元启发式方法. 本文在遵循Jaya算法按靠近最好解、远离最差解的方式更新种群个体的基础上, 针对复杂网络社区发现问题给出了Jaya算法离散化的策略, 提出一种复杂网络社区发现的离散Jaya算法. 实验表明, 在几个典型真实网络实例和一类人造网络实例上, 与几个经典算法和元启发式算法相比, 本文算法具有求解精度高、能自动确定社区数目等优点.