基于嵌入式深度学习的电力设备红外热成像故障识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Fault Recognition of Power Equipment in Infrared Thermal Images Based on Deep Learning with Embedded Devices
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着大型图像集的出现以及计算机硬件尤其是GPU的快速发展, 在有限计算资源的嵌入式设备上部署卷积神经网络(CNN)模型成为具有挑战性的问题. 电力设备过热故障可以通过采集的红外热成像进行识别. 由于红外辐射在空气中传播衰落, 红外测温结果低于实际温度值. 本文提出一种基于嵌入式设备的高效卷积神经网络用于电力设备热故障检测, 将SSD算法中的骨干网络替换为MobileNet, 同时Batch Normalization与前一卷积层合并, 以减少模型参数、提升推理速度、使之能够在轻量级计算平台上运行. 针对红外辐射在空气中传播损失的问题, 提出一种基于BP神经网络的红外测温修正单元. 基于上述创新设计了一种电力设备热故障检测系统, 实验以及现场应用表明, 该方法具有较高的准确性以及推理速度.

    Abstract:

    With the emerging large image sets and the rapid development of computer hardware, especially GPU, the deployment of Convolutional Neural Network (CNN) model on embedded devices with limited computing resources becomes a challenging problem. Overheating of power equipment can be identified from infrared thermal images. Because of the fading of infrared radiation in the air, the result of infrared temperature measurement is lower than the actual value. In this study, an efficient CNN based on embedded devices is proposed for thermal fault detection of power equipment. The backbone network of SSD algorithm is replaced by MobileNet. At the same time, batch normalization is combined with the previous volume to reduce model parameters, improve reasoning speed, and make it run on a lightweight computing platform. To solve the problem of infrared radiation loss in the air, an infrared temperature correction unit based on BP neural network is proposed. Based on the above innovation, a thermal fault detection system for power equipment is designed. Experiments and field applications show that the proposed method has high accuracy and reasoning speed.

    参考文献
    相似文献
    引证文献
引用本文

王彦博,陈培峰,徐亮,张合宝,房凯.基于嵌入式深度学习的电力设备红外热成像故障识别.计算机系统应用,2020,29(6):97-103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-19
  • 最后修改日期:2019-11-15
  • 录用日期:
  • 在线发布日期: 2020-06-12
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号