Abstract:Neurological diseases such as stroke, spinal cord injury, and degenerative joint diseases of the lower extremities can lead to limb dysfunction. It requires targeted and repetitive training. This study designs a wheelchair-type lower limb rehabilitation robot that can switch between sitting, standing, and lying modes. The wheelchair-type lower limb rehabilitation robot, in the active walking training mode of the robot standing posture, solves the forward speed of the human body to map the speed of the wheelchair-type chassis motor, and realizes the coordinated control of the gait training of the lower limb dysfunction patient and the robot wheelchair-type vehicle body. The experimental results show that the speed curve of the lower extremity exoskeleton walking and the speed curve of the wheelchair-type car body are basically the same, realizing the coordinated control of human and robot.