基于速度的轨迹停留点识别算法
作者:
基金项目:

广东省省级科技计划(2017A070713027)


Velocity-Based Trajectory Stop Point Recognition Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    轨迹中的停留点识别是将空间轨迹转换为语义轨迹的关键步骤.当前轨迹停留点识别方法缺少对轨迹记录点时间连续性的考虑,导致识别出的停留点缺乏时间信息.同时,在轨迹点缺失的情况下,停留点信息也无法被准确识别.针对上述问题,本文提出一种基于速度的时空聚类方法,首先通过缺失轨迹的时空特性确定真实缺失子轨迹,并根据缺失轨迹的平均速度对其进行插值填充,再结合轨迹速度特征和时空特性识别轨迹中的停留点.实验采用GeoLife轨迹数据集对所提出的方法进行验证,结果表明,该算法能够有效地识别用户的停留点,并对轨迹中的干扰具有一定的鲁棒性.

    Abstract:

    The recognition of stop point in trajectory is the key step to transform spatial trajectory into semantic trajectory. At present, the recognition method of the stop point lacks the consideration of the time continuity of the record point, which leads to the lack of time information of the identified stop point. At the same time, in the scenario of missing track points, the information of stop point cannot be accurately identified. In order to solve these problems, this study proposes a velocity based spatio-temporal clustering method. Firstly, the real missing sub trajectories are determined by the spatio-temporal characteristics of the missing trajectories, and then the missing trajectories are interpolated according to the average velocity of the missing trajectories. In the experiment, GeoLife trajectory data is used to verify the proposed method. The results show that the algorithm can effectively identify the user's stop point, and has relatively sound robustness to the interference in the trajectory.

    参考文献
    [1] Mazimpaka JD, Timpf S. Trajectory data mining:A review of methods and applications. Journal of Spatial Information Science, 2016, 2016(13):61-99
    [2] Ying JJC, Lee WC, Weng TC, et al. Semantic trajectory mining for location prediction. Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Chicago, IL, USA. 2011. 34-43.
    [3] Chawla S, Zheng Y, Hu JF. Inferring the root cause in road traffic anomalies. Proceedings of the 2012 IEEE 12th International Conference on Data Mining. Brussels, Belgium. 2012. 141-150.
    [4] Jirka S, Remke A, Bröring A. enviroCar-crowd sourced traffic and environment data for sustainable mobility. Proceedings of Environmental Information Systems and Services-Infrastructures and Platforms. Austria. 2013.
    [5] De Groeve J, Van de Weghe N, Ranc N, et al. Extracting spatio-temporal patterns in animal trajectories:An ecological application of sequence analysis methods. Methods in Ecology and Evolution, 2016, 7(3):369-379.[doi:10.1111/2041-210X.12453
    [6] Alvares LO, Bogorny V, de Macedo JAF, et al. Dynamic modeling of trajectory patterns using data mining and reverse engineering. Proceedings of Tutorials, Posters, Panels and Industrial Contributions at the 26th International Conference on Conceptual Modeling-Volume 83. Auckland, New Zealand. 2007. 149-154.
    [7] Restrepo E, Moreno F, Lasheras FS. Identification of frequent touristic routes using the SMoT algorithm. AIP Conference Proceedings, 2013, 1558(1):2325-2328
    [8] Moreno FJ, Pineda AF, Fileto R, et al. SMOT+:Extending the SMOT algorithm for discovering stops in nested sites. Computing and Informatics, 2014, 33(2):327-342
    [9] Arboleda FJM, Bogorny V, Patiño H. SMoT+NCS:Algorithm for detecting non-continuous stops. Computing and Informatics, 2017, 36(2):283-306.[doi:10.4149/cai_2017_2_283
    [10] Luo T, Zheng XW, Xu GL, et al. An improved DBSCAN algorithm to detect stops in individual trajectories. ISPRS International Journal of Geo-Information, 2017, 6(3):63.[doi:10.3390/ijgi6030063
    [11] Alvares LO, Bogorny V, Kuijpers B, et al. A model for enriching trajectories with semantic geographical information. Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems. Seattle, WA, USA. 2007. Article No.22.
    [12] Xie KX, Deng K, Zhou XF. From trajectories to activities:A spatio-temporal join approach. Proceedings of the 2009 International Workshop on Location Based Social Networks. Seattle, WA, USA. 2009. 25-32.
    [13] Ashbrook D, Starner T. Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing, 2003, 7(5):275-286.[doi:10.1007/s00779-003-0240-0
    [14] Zhou CQ, Frankowski D, Ludford P, et al. Discovering personally meaningful places:An interactive clustering approach. ACM Transactions on Information Systems (TOIS), 2007, 25(3):Article No. 12.[doi:10.1145/1247715.1247718
    [15] Hwang S, Evans C, Hanke T. Detecting stop episodes from GPS trajectories with gaps. In:Thakuriah P, Tilahun N, Zellner M, eds. Seeing Cities Through Big Data. Cham:Springer, 2017. 427-439.
    [16] Palma AT, Bogorny V, Kuijpers B, et al. A clustering-based approach for discovering interesting places in trajectories. Proceedings of the 2008 ACM Symposium on Applied Computing. Fortaleza, Ceara, Brazil. 2008. 863-868.
    [17] Zhao XL, Xu WX. A clustering-based approach for discovering interesting places in a single trajectory. Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation. Changsha, China. 2009. 429-432.
    [18] Yan ZX, Parent C, Spaccapietra S, et al. A hybrid model and computing platform for spatio-semantic trajectories. Proceedings of the 7th Extended Semantic Web Conference on the Semantic Web:Research and Applications. Heraklion, Crete. 2010. 60-75.
    [19] Lv MQ, Chen L, Xu ZX, et al. The discovery of personally semantic places based on trajectory data mining. Neurocomputing, 2016, 173:1142-1153.[doi:10.1016/j.neucom.2015.08.071
    [20] Chen W, Ji MH, Wang JM. T-DBSCAN:A spatiotemporal density clustering for GPS trajectory segmentation. International Journal of Online and Biomedical Engineering (iJOE), 2014, 10(6):19.[doi:10.3991/ijoe.v10i6.3881
    [21] Yang YL, Li LD, Tang JC, et al. The PGST-DBSCAN algorithm for mining clusters from massive spatial-temporal data. Proceedings of 2nd International Conference on Artificial Intelligence and Engineering Applications. Guilin, China. 2017. 67-87.
    [22] Bryant A, Cios K. RNN-DBSCAN:A density-based clustering algorithm using reverse nearest neighbor density estimates. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6):1109-1121.[doi:10.1109/TKDE.2017.2787640
    [23] Birant D, Kut A. ST-DBSCAN:An algorithm for clustering spatial-temporal data. Data & Knowledge Engineering, 2007, 60(1):208-221
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡小路,曹阳,董蒲.基于速度的轨迹停留点识别算法.计算机系统应用,2020,29(4):214-219

复制
分享
文章指标
  • 点击次数:4231
  • 下载次数: 3016
  • HTML阅读次数: 1963
  • 引用次数: 0
历史
  • 收稿日期:2019-09-10
  • 最后修改日期:2019-10-10
  • 在线发布日期: 2020-04-09
  • 出版日期: 2020-04-15
文章二维码
您是第11201574位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号