基于模型剪枝和半精度加速改进YOLOv3-tiny算法的实时司机违章行为检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51775449,51205323)


Real-Time Drivers’ Violation Behaviors Detection Based on Improved YOLOv3-tiny Algorithm Based on Model Pruning and Half-Precision Acceleration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决在嵌入式设备上实时、高精度检测司机安全驾驶监督的问题,本文基于目标检测中经典的深度学习神经网络YOLOv3-tiny,运用通道剪枝技术成功在目标检测任务中实现了模型压缩,在精度不变的情况下减少了改进后神经网络的计算总量和参数总数.并基于NVIDIA的推理框架TensorRT进行了模型层级融合和半精度加速,部署加速后的模型.实验结果表明,加速模型的推理速度约为原模型的2倍,参数体积缩小一半,精度无损失,实现了高精度下实时检测的目的.

    Abstract:

    In order to optimize the method of real-time and high-precision detection of drivers' safe driving supervision, based on the classic deep learning neural network-YOLOv3-tiny-in object detection, this study successfully uses the channel pruning technology to achieve model compression in the object detection task, and reduces the calculated total amount and parameters of the improved neural network under the condition of constant accuracy. Based on NVIDIA’s inference platform TensorRT, model level fusion and half-precision acceleration are performed, and the accelerated model is deployed. The experimental results show that the speed of inference of the acceleration model is about 2 times that of the original model, the parameter volume is reduced by half, and the accuracy is not lost, which realizes the purpose of real-time detection under high precision.

    参考文献
    相似文献
    引证文献
引用本文

姚巍巍,张洁.基于模型剪枝和半精度加速改进YOLOv3-tiny算法的实时司机违章行为检测.计算机系统应用,2020,29(4):41-47

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-06
  • 最后修改日期:2019-10-08
  • 录用日期:
  • 在线发布日期: 2020-04-09
  • 出版日期: 2020-04-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号