双路径反馈网络的图像超分辨重建算法
作者:
基金项目:

中央引导地方科技发展专项(2017L3009)


Dual Stream Feedback Network for Image Super-Resolution Reconstruction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [8]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    图像超分辨率重建在安防系统,小目标检测以及医学图像等有着广泛的应用.本文提出一种双路径反馈网络来提高图像超分辨重建的性能.在双路径网络中,一条路径采用深度残差稠密网络学习重建图像的高频信息,另一条路径直接在输入图像上通过亚像素卷积层上采样到所需分辨率来给重建图像提供低频信息,然后将两条路径得到的特征图进行融合来自适应的选取所需要的信息,接着通过一个反馈型卷积层进行局部循环训练来获得大的感受野.通过在数据集DIV2K上训练,实验结果表明所提方法的有效性和优越性.

    Abstract:

    Image super-resolution reconstruction has a wide range of applications, such as security systems, small object detection, and medical imaging. This study proposes a dual stream feedback network to improve the performance of image super-resolution reconstruction. In the dual-stream network, one path adapts a deep residual dense network to learn the high-frequency information of the reconstructed image, and the other path directly samples the input image to the desired resolution through a sub-pixel convolution layer. Then, the feature maps obtained from the two paths are fused to adaptively selecting the required information. Finally, using a feedback convolutional layer for locally loop training to obtain a large receptive field. By training on the dataset DIV2K, the experimental results show the effectiveness and superiority of the proposed method.

    参考文献
    [1] Bai YC, Zhang YQ, Ding ML, et al. Finding tiny faces in the wild with generative adversarial network. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. 2018. 21-30.
    [2] Dong C, Loy CC, He KM, et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307.[doi:10.1109/TPAMI.2015.2439281
    [3] Shi WZ, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 1874-1883.
    [4] Kim J, Kwon Lee J, Mu Lee K. Accurate image super-resolution using very deep convolutional networks. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 1646-1654.
    [5] Zhang YL, Tian YP, Kong Y, et al. Residual dense network for image super-resolution. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. 2018. 2472-2481.
    [6] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 2008, 44(13):800-801.[doi:10.1049/el:20080522
    [7] Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment:From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4):600-612.[doi:10.1109/TIP.2003.819861
    [8] Huang JB, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 5197-5206.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陶状,廖晓东,沈江红.双路径反馈网络的图像超分辨重建算法.计算机系统应用,2020,29(4):181-186

复制
分享
文章指标
  • 点击次数:2066
  • 下载次数: 2040
  • HTML阅读次数: 1442
  • 引用次数: 0
历史
  • 收稿日期:2019-09-01
  • 最后修改日期:2019-09-23
  • 在线发布日期: 2020-04-09
  • 出版日期: 2020-04-15
文章二维码
您是第12435988位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号