基于Siamese网络的行人重识别方法
作者:
基金项目:

福建省自然科学基金面上项目(2017J01739,2018J01779);闽江学院福建省信息处理与智能控制重点实验室开放基金(MJUKF-IPIC201810);福州市科技重大项目(榕科(2017)325号)


Person Re-Identification Method Based on Siamese Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对目前行人重识别技术的缺点,提出一种基于Siamese网络的行人重识别方法.首先使用Dropout算法对卷积神经网络进行改良,降低发生过拟合问题的概率;而后构造一个Siamese网络,将CNN (Convolution Neural Network)中特征提取和检验相融合,提高图像识别的效率和准确率;最后利用度量学习算法中的马氏距离作为检索图像匹配相似度的评价指标.实验结果表明:针对Market-1501数据集,该方法可以有效提高采用卷积神经网络的行人重识别方法识别效率和准确率.

    Abstract:

    Aiming at the shortcomings of the current pedestrian re-identification technology, this paper presents a pedestrian re-identification method based on Siamese network. First, Dropout algorithm is used to improve the performance of Convolutional Neural Network (CNN), which can reduce the incidence of the fitting problem. By integration of classification and inspection in the CNN, Siamese network is constructed to improve the efficiency and accuracy of image recognition. Finally, Markov distance for metric learning algorithm is used as the evaluation index of image matching similarity. Experiments are conducted on the Market-1501, and the experimental results show that this method is effective in terms of improving the efficiency and accuracy of pedestrian re-identification algorithm.

    参考文献
    [1] Gheissari N, Sebastian TB, Hartley R. Person reidentification using spatiotemporal appearance. Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA. 2006. 1528-1535.
    [2] 熊炜, 冯川, 熊子婕, 等. 基于CNN的改进行人重识别技术. 计算机工程与科学, 2019, 41(4):665.[doi:10.3969/j.issn.1007-130X.2019.04.013
    [3] Zheng L, Yang Y, Hauptmann AG. Person re-identification:Past, present and future. arXiv:1610.02984, 2016.
    [4] Liao SC, Hu Y, Zhu XY, et al. Person re-identification by local maximal occurrence representation and metric learning. Proceedings of 2005 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 2197-2206.
    [5] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, NV, USA. 2012. 1097-1105.
    [6] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout:A simple way to prevent neural networks from overfitting. The Journal Machine Learning Research, 2014, 15(1):1929-1958
    [7] Zagoruyko S, Komodakis N. Learning to compare image patches via convolutional neural networks. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA. 2015. 4353-4361.
    [8] Varior RR, Shuai B, Lu JW, et al. A Siamese long short-term memory architecture for human re-identification. Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands. 2016. 135-153.
    [9] Varior RR, Haloi M, Wang G. Gated Siamese convolutional neural network architecture for human re-identification. Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands. 2016. 791-808.
    [10] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8):1735-1780.[doi:10.1162/neco.1997.9.8.1735
    [11] Zheng L, Shen LY, Tian L, et al. Scalable person re-identification:A benchmark. Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile. 2015. 1116-1124.
    [12] 张兴福, 黄少滨. 基于马氏距离度量的局部线性嵌入算法. 模式识别与人工智能, 2012, 25(2):318-324.[doi:10.3969/j.issn.1003-6059.2012.02.020
    [13] 张国云, 向灿群, 罗百通, 等. 一种改进的人脸识别CNN结构研究. 计算机工程与应用, 2017, 53(17):180-185, 191.[doi:10.3778/j.issn.1002-8331.1612-0136
    [14] Zheng ZD, Zheng L, Yang Y. A discriminatively learned CNN embedding for person reidentification. ACM Transactions on Multimedia Computing, Communications, and Applications, 2016, 14(1):13
    [15] Zheng ZD, Zheng L, Yang Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy. 2017. 3774-3782.
    [16] Zhang L, Xiang T, Gong SG. Learning a discriminative null space for person re-identification. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. 2016. 1239-1248.
    引证文献
引用本文

叶锋,刘天璐,李诗颖,华笃伟,陈星宇,林文忠.基于Siamese网络的行人重识别方法.计算机系统应用,2020,29(4):209-213

复制
分享
文章指标
  • 点击次数:1799
  • 下载次数: 2703
  • HTML阅读次数: 1977
  • 引用次数: 0
历史
  • 收稿日期:2019-08-22
  • 最后修改日期:2019-09-09
  • 在线发布日期: 2020-04-09
  • 出版日期: 2020-04-15
文章二维码
您是第12436054位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号