利用外部知识辅助和多步推理的选择题型机器阅读理解模型
作者:

Leveraging Commonsense Knowledge to Assist Multi-Step Reasoning for Multiple Choice Machine Reading Comprehension
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    选择题型机器阅读理解的答案候选项往往不是直接从文章中抽取的文本片段,而是对文章内容中相关片段的归纳总结、文本改写或知识推理,因此选择题型机器阅读理解的问题通常需要从给定的文本中甚至需要利用外部知识辅助进行答案推理.目前选择题型机器阅读理解模型大多数方法是采用深度学习方法,利用注意力机制对文章、问题和候选项这三者的信息进行细致交互,从而得到融合三者信息的表示进而用于答案的预测.这种方式只能利用给定的文本进行回答,缺乏融入外部知识辅助,因而无法处理需外部知识辅助推理的问题.为了解决需外部知识辅助推理的问题,本文提出了一个采用外部知识辅助多步推理的选择题型机器阅读理解模型,该模型首先利用注意力机制对文章、问题和候选项及与这三者相关的外部知识进行信息交互建模,然后采用多步推理机制对信息交互建模结果进行多步推理并预测答案.本文在2018年国际语义测评竞赛(SemEval)中任务11的数据集MCScript上进行对比实验,实验结果表明本文提出的方法有助于提高需要外部知识辅助的选择题型问题的准确率.

    Abstract:

    Typically, the options of multiple choice Machine Reading Comprehension (MRC) are not directly extracted from the given document. Thus the answers need to be summarized or rewritten or even inferred from document or from the world’s knowledge. Most existing models adopt attention mechanism to generate an interactive representation of document, question, and option. However, these models are limited by only using the given document rather than common knowledge, leading to poor result when dealing with questions requiring external knowledge assistance reasoning. To address questions requiring external knowledge assistance reasoning, we propose a novel neural model by integrating external commonsense knowledge to assist multi-step reasoning. Our model first interacts information among document, question, options, and related external knowledge by attention mechanism and then predicts answer by multi-step reasoning through the interaction results. The experimental results on the SemEval-2018 MCScript corpus show that the proposed model improves the accuracy of question answering requiring common knowledge reasoning.

    参考文献
    [1] Hermann KM, Kočiský T, Grefenstette E, et al. Teaching machines to read and comprehend. Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, QC, Canada. 2015. 1693-1701.
    [2] Hill F, Bordes A, Chopra S, et al. The goldilocks principle:Reading children's books with explicit memory representations. arXiv preprint arXiv:1511.02301, 2015.
    [3] Rajpurkar P, Zhang J, Lopyrev K, et al. SQuAD:100,000+ questions for machine comprehension of text. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, TX, USA. 2016. 2383-2392.
    [4] Joshi M, Choi E, Weld D, et al. TriviaQA:A large scale distantly supervised challenge dataset for reading comprehension. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, BC, Canada. 2017. 1601-1611.
    [5] Richardson M, Burges CJC, Renshaw E. MCTest:A challenge dataset for the open-domain machine comprehension of text. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle, WC, USA. 2013. 193-203.
    [6] Lai GK, Xie QZ, Liu HX, et al. RACE:Large-scale ReAding comprehension dataset from examinations. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark. 2017. 785-794.
    [7] Ostermann S, Modi A, Roth M, et al. MCScript:A novel dataset for assessing machine comprehension using script knowledge. Proceedings of the Eleventh International Conference on Language Resources and Evaluation. Miyazaki, Japan. 2018. 3567-3574.
    [8] Parikh S, Sai AB, Nema P, et al. ElimiNet:A model for eliminating options for reading comprehension with multiple choice questions. Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden. 2018. 4272-4278.
    [9] Zhu HC, Wei FR, Qin B, et al. Hierarchical attention flow for multiple-choice reading comprehension. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans, LA, USA. 2018. 6077-6084.
    [10] Wang SH, Yu M, Jiang J, et al. A co-matching model for multi-choice reading comprehension. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia. 2018. 746-751.
    [11] Dhingra B, Liu HX, Yang ZL, et al. Gated-attention readers for text comprehension. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, BC, Canada. 2017. 1832-1846.
    [12] Xu YC, Liu JJ, Gao JF, et al. Dynamic fusion networks for machine reading comprehension. arXiv preprint arXiv:1711.04964, 2017.
    [13] Wang L, Sun M, Zhao W, et al. Yuanfudao at SemEval-2018 Task 11:Three-way attention and relational knowledge for commonsense machine comprehension. Proceedings of the 12th International Workshop on Semantic Evaluation. New Orleans, LA, USA. 2018. 758-762.
    [14] Chen WY, Quan XJ, Chen CB. Gated convolutional networks for commonsense machine comprehension. Proceedings of the 25th International Conference on Neural Information Processing. Siem Reap, Cambodia. 2018. 297-306.
    [15] Pennington J, Socher R, Manning C. Glove:Global vectors for word representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar. 2014. 1532-1543.
    [16] Mihaylov T, Frank A. Knowledgeable reader:Enhancing cloze-style reading comprehension with external commonsense knowledge. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia. 2018. 821-832.
    [17] Tai KS, Socher R, Manning CD. Improved semantic representations from tree-structured long short-term memory networks. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing, China. 2015. 1556-1566.
    [18] Wang SH, Jiang J. A compare-aggregate model for matching text sequences. arXiv preprint arXiv:1611.01747, 2016.
    [19] Liu XD, Shen YL, Duh K, et al. Stochastic answer networks for machine reading comprehension. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia. 2018. 1694-1704.
    [20] Speer R, Chin J, Havasi C. ConceptNet 5.5:An open multilingual graph of general knowledge. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, CA, USA. 2017. 4444-4451.
    [21] Singh P, Lin T, Mueller ET, et al. Open mind common sense:Knowledge acquisition from the general public. Proceedings of OTM Confederated International Conferences on the Move to Meaningful Internet Systems. Irvine, CA, USA. 2002. 1223-1237.
    [22] Bond F, Foster R. Linking and extending an open multilingual WordNet. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia, Bulgaria. 2013. 1352-1362.
    [23] Elkan C, Greiner R. Building large knowledge-based systems:Representation and inference in the CYC project:D.B. Lenat and R.V. Guha. Artificial Intelligence, 1993, 61(1):41-52.[doi:10.1016/0004-3702(93)90092-P
    [24] Auer S, Bizer C, Kobilarov G, et al. Dbpedia:A nucleus for a Web of open data. In:Aberer K, Choi KS, Noy N, et al., eds. The Semantic Web. Berlin, Heidelberg:Springer, 2007. 722-735.
    [25] Breen J. JMDict:A Japanese-multilingual dictionary. Proceedings of the Workshop on Multilingual Linguistic Resources. Geneva, Switzerland. 2004. 65-72.
    [26] Von Ahn L, Kedia M, Blum M. Verbosity:A game for collecting common-sense facts. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Montréal, Québec, Canada. 2006. 75-78.
    [27] Kuo YL, Lee JC, Chiang KY, et al. Community-based game design:Experiments on social games for commonsense data collection. Proceedings of the ACM SIGKDD Workshop on Human Computation. Paris, France. 2009. 15-22.
    [28] Nakahara K, Yamada S. Development and evaluation of a web-based game for common-sense knowledge acquisition in Japan. Unisys Technology Review, 2011, 30(4):295-305
    [29] Kingma DP, Ba J. Adam:A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
    [30] Chen ZP, Cui YM, Ma WT, et al. HFL-RC system at SemEval-2018 Task 11:Hybrid multi-aspects model for commonsense reading comprehension. arXiv preprint arXiv:1803.05655, 2018.
    [31] Merkhofer E, Henderson J, Bloom D, et al. MITRE at SemEval-2018 Task 11:Commonsense reasoning without commonsense knowledge. Proceedings of the 12th International Workshop on Semantic Evaluation. New Orleans, LA, USA. 2018. 1078-1082.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

盛艺暄,兰曼.利用外部知识辅助和多步推理的选择题型机器阅读理解模型.计算机系统应用,2020,29(4):1-9

复制
分享
文章指标
  • 点击次数:2422
  • 下载次数: 3271
  • HTML阅读次数: 1548
  • 引用次数: 0
历史
  • 收稿日期:2019-08-14
  • 最后修改日期:2019-09-06
  • 在线发布日期: 2020-04-09
  • 出版日期: 2020-04-15
文章二维码
您是第12436054位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号