基于机器视觉的水表抓取系统
作者:
基金项目:

福建省自然科学基金(2018J01534)


Water Meter Grasping System Based on Machine Vision
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目前国内对水表的检定多采用人工的检定方式,过程中存在许多重复人力操作,造成检定过程费时费力.为了解决这一问题,本文在水表检定过程设计了用工业机器人代替人工完成水表的检定工作,提出了一种基于机器视觉的水表抓取方法.系统通过YOLOv3网络对处于不同环境下的不同型号的水表进行检测,获取目标水表的型号和位置后再进行水表的位姿检测得到水表抓取点坐标与水表姿态角并控制机器人进行抓取.实验表明,该系统能在不同外界环境下实现不同型号水表的抓取和精确放置,具有较好的鲁棒性和较高抓取成功率,能够满足实际水表自动检定线上的水表抓取需求.

    Abstract:

    At present, the calibration of water meters in China mostly adopts manual calibration, and there are many repetitive manual operations in the process, which makes the calibration process time-consuming and laborious. In order to solve this problem, robots were used to replace the manual work to complete the calibration in the process of water meter calibration and a water meter grasping method based on machine vision was proposed in this study. Different types of water meters in different environments can be detected through the YOLOv3 network in the system. After obtaining the type and position of the target water meter, the system carries on the dection of position and posture of the water meter to obtain the coordinates of the grasping point and the attitude angle of the water meter, and controls the robot to grasp the water meter. Experimental results show that different types of water meter in different external environments can be grasped and accurately placed with the system, the system has sound robustness and high grasping success rate, and can satisfy the needs of actual water meter automatic calibration line.

    参考文献
    [1] 潘丰.水表特性自动校验系统设计.传感器技术, 2003, 22(10):24-26, 29
    [2] 陈硕,刘丰,唐旭晟,等.基于机器视觉技术的水表在线检定系统研究.计量学报, 2017, 38(4):473-476.[doi:10.3969/j.issn.1000-1158.2017.04.19
    [3] 汤思孟,赵杰煜,陆晓峰.基于机器视觉技术的水表新型检定方法.计量学报, 2015, 36(1):54-57.[doi:10.3969/j.issn.1000-1158.2015.01.12
    [4] 林阳,郭丙轩,肖雄武,等.利用多种投票策略的水表读数字符分割与识别.科学技术与工程, 2017, 17(10):50-57.[doi:10.3969/j.issn.1671-1815.2017.10.009
    [5] 周兵,张宏魁.静态容积法水表自动检定装置.计量技术, 2008,(10):41-44.[doi:10.3969/j.issn.1000-0771.2008.10.013
    [6] 詹志杰,沈文新,林志良,等.全自动活塞式流量时间法水表检定装置的设计.计量学报, 2012, 33(S1):153-158
    [7] 李鑫,胡婷.机器人自动挂(摘)表式单相电能表检定装置.大众用电, 2016, 31(8):47-48
    [8] Redmon J, Farhadi A. YOLOv3:An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.
    [9] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified, real-time object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 779-788.
    [10] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    [11] 吕铄,蔡烜,冯瑞.基于改进损失函数的YOLOv3网络.计算机系统应用, 2019, 28(2):1-7.[doi:10.15888/j.cnki.csa.006772
    [12] 杨敏,叶邦彦,牟丽,等.用于机械零件视觉检测的彩色图像灰度化算法.现代制造工程, 2004,(10):69-71.[doi:10.3969/j.issn.1671-3133.2004.10.030
    [13] Zhang ZY. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334.[doi:10.1109/34.888718
    [14] Sorkine O. Least-squares rigid motion using SVD. Technical Notes, 2009:1-6
    [15] Ren SQ, He KM, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.[doi:10.1109/TPAMI.2016.2577031
    [16] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands. 2016. 21-37.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丘海斌,陈丹,王孝顺.基于机器视觉的水表抓取系统.计算机系统应用,2020,29(3):80-86

复制
分享
文章指标
  • 点击次数:2304
  • 下载次数: 3025
  • HTML阅读次数: 1572
  • 引用次数: 0
历史
  • 收稿日期:2019-07-31
  • 最后修改日期:2019-09-02
  • 在线发布日期: 2020-03-02
  • 出版日期: 2020-03-15
文章二维码
您是第11201574位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号