Abstract:The existing image super-resolution reconstruction method based on deep learning is easy to generate pseudo texture, and the rich local feature layer information in the original low-resolution image is not fully utilized. In order to improve image quality, a super-resolution reconstruction method based on attentive generative adversarial is proposed. The generator part of the method is constructed by attention recursive network, and a dense residual block structure is also introduced in the network. First, the generator extracts the local feature layer information of the image by using the self-encoding structure to improve the resolution. Then, the image is corrected by the discriminator. Finally, the image is reconstructed into a high-resolution image. In a variety of networks for peak signal-to-noise ratio super-resolution evaluation methods, the experimental results show that the designed network exhibits stable training performance, improves the visual quality of the image, and has strong robustness.