改进回溯搜索优化回声状态网络时间序列预测
作者:
基金项目:

国网湖北省电力有限公司科技项目(52153317000B)


Time Series Forecasting Based on Echo State Network Optimized by Improved Backtracking Search Optimization Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    回声状态网络(Echo State Network,ESN)网络结构简单且耦合“时间参数”,在时间序列预测研究中具有重要的理论和应用价值.本文提出使用自适应回溯搜索算法(Adaptive Backtracking Search optimization Algorithm,ABSA)优化ESN输出连接权值矩阵,克服标准线性回归方法造成的网络过拟合问题.ABSA使用自适应变异因子策略替换标准BSA中随机给定变异因子的策略,实现BSA在收敛精度和收敛速率之间的平衡.实验表明,采用ABSA优化的ESN能够比未优化的ESN和采用其他进化算法优化的ESN获得更好的预测精度.

    Abstract:

    Echo State Network (ESN) owns simple network structure and is coupled with a time parameter and thus it shows important theoretical and application values in time series forecasting. In this study, we propose to optimize the output weight matrix by Adaptive Backtracking Search optimization Algorithm (ABSA) to overcome overfitting problem caused by linear regression algorithm. ABSA adopts adaptive mutation factor strategy to replace the strategy of randomly given mutation factor in standard BSA to achieve the balance between convergence accuracy and convergence rate. Experimental results show that the ESN optimized by ABSA outperforms the basic ESN without optimization and the ESNs optimized by other EAs.

    参考文献
    [1] Lee Giles C, Lawrence S, Tsoi AC. Noisy time series prediction using recurrent neural networks and grammatical inference. Machine Learning, 2001, 44(1-2):161-183
    [2] Zhang GQ, Patuwo BE, Hu MY. Forecasting with artificial neural networks::The state of the art. International Journal of Forecasting, 1998, 14(1):35-62. doi:10.1016/S0169-2070(97)00044-7
    [3] Wang L, Wang ZG, Qu H, et al. Optimal forecast combination based on neural networks for time series forecasting. Applied Soft Computing, 2018, 66:1-17. doi:10.1016/j.asoc.2018.02.004
    [4] Jaeger H, Haas H. Harnessing nonlinearity:Predicting chaotic systems and saving energy in wireless communication. Science, 2004, 304(5667):78-80. doi:10.1126/science.1091277
    [5] 田中大, 高宪文, 李树江, 等. 遗传算法优化回声状态网络的网络流量预测. 计算机研究与发展, 2015, 52(5):1137-1145. doi:10.7544/issn1000-1239.2015.20131757
    [6] 王华秋, 王斌, 龙建武. 回声状态网络在变风量空调内模控制中的应用. 重庆理工大学学报(自然科学), 2017, 31(6):120-126, 153
    [7] 杜晟磊. 基于回声状态网络的非线性卫星信道盲均衡. 科技创新与应用, 2017, (30):19-21
    [8] 宗宸生, 郑焕霞, 王林山. 改进粒子群优化BP神经网络粮食产量预测模型. 计算机系统应用, 2018, 27(12):204-209. doi:10.15888/j.cnki.csa.006651
    [9] 朱海龙, 陶晶, 俞凯, 等. 基于GA-BP神经网络的胎儿体重预测分析. 计算机系统应用, 2018, 27(3):162-167. doi:10.15888/j.cnki.csa.006252
    [10] Chouikhi N, Ammar B, Rokbani N, et al. PSO-based analysis of Echo State Network parameters for time series forecasting. Applied Soft Computing, 2017, 55:211-225. doi:10.1016/j.asoc.2017.01.049
    [11] Wang HS, Yan XF. Optimizing the echo state network with a binary particle swarm optimization algorithm. Knowledge-Based Systems, 2015, 86:182-193. doi:10.1016/j.knosys.2015.06.003
    [12] Jaeger H. The "echo state" approach to analysing and training recurrent neural networks-with an erratum note. Bonn:German National Research Center for Information Technology GMD Technical Report, 2001.
    [13] Civicioglu P. Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and Computation, 2013, 219(15):8121-8144. doi:10.1016/j.amc.2013.02.017
    [14] Wang S, Da XY, Li MD, et al. Adaptive backtracking search optimization algorithm with pattern search for numerical optimization. Journal of Systems Engineering and Electronics, 2016, 27(2):395-406. doi:10.1109/JSEE.2016.00041
    [15] Madasu SD, Kumar MLSS, Singh AK. Comparable investigation of backtracking search algorithm in automatic generation control for two area reheat interconnected thermal power system. Applied Soft Computing, 2017, 55:197-210. doi:10.1016/j.asoc.2017.01.018
    [16] Chaib AE, Bouchekara HREH, Mehasni R, et al. Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm. International Journal of Electrical Power & Energy Systems, 2016, 81:64-77
    [17] 庞世伟, 于开平, 邹经湘. 基于时变NARMA模型的非线性时变系统辨识. 工程力学, 2006, 23(12):25-29. doi:10.3969/j.issn.1000-4750.2006.12.005
    [18] MacKey MC, Glass L. Oscillation and chaos in physiological control systems. Science, 1977, 197(4300):287-289. doi:10.1126/science.267326
    [19] Farmer JD. Chaotic attractors of an infinite-dimensional dynamical system. Physics D:Nonlinear Phenomena, 1982, 4(3):366-393. doi:10.1016/0167-2789(82)90042-2
    [20] Bauer E, Kohavi R. An empirical comparison of voting classification algorithms:Bagging, boosting, and variants. Machine Learning, 1999, 36(1-2):105-139
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡率,肖治华,饶强,廖荣涛.改进回溯搜索优化回声状态网络时间序列预测.计算机系统应用,2020,29(1):236-243

复制
分享
文章指标
  • 点击次数:1599
  • 下载次数: 2763
  • HTML阅读次数: 1682
  • 引用次数: 0
历史
  • 收稿日期:2019-05-22
  • 最后修改日期:2019-06-21
  • 在线发布日期: 2019-12-30
  • 出版日期: 2020-01-15
文章二维码
您是第12460356位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号