基于LSTM-BP组合模型的短时交通流预测
作者:

Short-Term Traffic Flow Forecasting Model Based on LSTM-BP
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为减轻日益严重的交通拥堵问题,实现智能交通管控,给交通流诱导和交通出行提供准确实时的交通流预测数据,设计了基于长短时记忆神经网络(LSTM)和BP神经网络结合的LSTM-BP组合模型算法.挖掘已知交通流数据的特征因子,建立时间序列预测模型框架,借助Matlab完成从数据的处理到模型的仿真,实现基于LSTM-BP的短时交通流精确预测.通过与LSTM\BP\WNN三种预测网络模型的对比,结果表明LSTM-BP预测的时间序列具有较高的精度和稳定性.该模型的搭建,可对交通分布的预测、交通方式的划分、实时交通流的分配提供依据和参考.

    Abstract:

    In order to alleviate the increasingly serious traffic congestion problem, realize intelligent traffic control, provide accurate real-time traffic flow prediction data for traffic flow induction and traffic travel, an LSTM-BP combined model algorithm based on long-short-time memory neural network (LSTM) and BP neural network is designed. Mining the characteristic factors of known traffic flow data, establishing the framework of time series prediction model, and using Matlab to complete the simulation from the data processing to the model simulation to realize the accurate prediction of short-term traffic flow based on LSTM-BP. Compared with the three prediction network models of LSTM\BP\WNN, the results show that the time series predicted by LSTM-BP has higher accuracy and stability. The construction of the model can provide basis and reference for the prediction of traffic distribution, the division of traffic modes, and the distribution of real-time traffic flow.

    参考文献
    [1] 隋亚刚,李瑞敏,郭敏,等.城市道路交通流预测预报系统研究与应用.北京:中国铁道出版社, 2009.
    [2] 邵俊倩.基于小波模糊神经网络的实时交通流预测.计算机系统应用, 2016, 25(7):161-164.[doi:10.15888/j.cnki.csa.005258
    [3] 冯钧,潘飞.一种LSTM-BP多模型组合水文预报方法.计算机与现代化, 2018,(7):82-85, 92.[doi:10.3969/j.issn.1006-2475.2018.07.017
    [4] Kumar K, Parida M, Katiyar VK. Short term traffic flow prediction for a non urban highway using artificial neural network. Procedia-Social and Behavioral Sciences, 2013, 104:755-764.[doi:10.1016/j.sbspro.2013.11.170
    [5] Wang J, Deng W, Guo YT. New Bayesian combination method for short-term traffic flow forecasting. Transportation Research Part C:Emerging Technologies, 2014, 43:79-94.[doi:10.1016/j.trc.2014.02.005
    [6] Xie YC, Zhang YL. A wavelet network model for short-term traffic volume forecasting. Journal of Intelligent Transportation Systems, 2006, 10(3):141-150.[doi:10.1080/15472450600798551
    [7] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8):1735-1780.[doi:10.1162/neco.1997.9.8.1735
    [8] Ma XL, Tao ZM, Wang YH, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C:Emerging Technologies, 2015, 54:187-197.[doi:10.1016/j.trc.2015.03.014
    [9] 李松,刘力军,翟曼.改进粒子群算法优化BP神经网络的短时交通流预测.系统工程理论与实践, 2012, 32(9):2045-2049.[doi:10.3969/j.issn.1000-6788.2012.09.024
    [10] Zhao Z, Chen WH, Wu XM, et al. LSTM network:A deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems, 2017, 11(2):68-75.[doi:10.1049/iet-its.2016.0208
    [11] Liu BY, Cheng JR, Liu Q, et al. A long short-term traffic flow prediction method optimized by cluster computing. Electrical&Electronic Engineering, 2018.[doi:10.20944/preprints201808.0163.v1.
    [12] Transporation Data Research Laboratory. Twin cities'traffic data archive. http://www.d.umn.edu/tdrl/,[2018-08-10].
    [13] 陈英义,程倩倩,方晓敏,等.主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧.农业工程学报, 2018, 34(17):183-191.[doi:10.11975/j.issn.1002-6819.2018.17.024
    [14] 王祥雪,许伦辉.基于深度学习的短时交通流预测研究.交通运输系统工程与信息, 2018, 18(1):81-88
    [15] 金玉婷,余立建.基于小波神经网络的短时交通流预测.交通科技与经济, 2014, 16(1):82-86.[doi:10.3969/j.issn.1008-5696.2014.01.023
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李明明,雷菊阳,赵从健.基于LSTM-BP组合模型的短时交通流预测.计算机系统应用,2019,28(10):152-156

复制
分享
文章指标
  • 点击次数:2608
  • 下载次数: 4502
  • HTML阅读次数: 1417
  • 引用次数: 0
历史
  • 收稿日期:2019-03-14
  • 最后修改日期:2019-04-04
  • 在线发布日期: 2019-10-15
  • 出版日期: 2019-10-15
文章二维码
您是第11203181位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号