基于改进的K-means聚类的多区域物流中心选址算法
作者:

Multi-Regional Logistics Distribution Center Location Method Based on Improved K-means Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [9]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对当前多区域物流中心选址需建立配送中心个数不定、位置、覆盖范围不明的问题,本文提出了一种改进的k-means聚类算法,以城市经济引力模型为基础,将城市运输距离与居民消费能力的指标相结合,重新定义对象之间相似性度量的距离因子.并将密度思想引入k-means算法,提出类内差分均值的概念确定最优聚类数.实现分区后,分别在这些区域中利用重心法对配送中心进行最终的确定.最后实例分析了在西部地区37个城市创建物流配送中心的选址过程,并通过和传统的k-means聚类的选址结果对比,说明改进后的算法不仅可以节省配送时间,而且大大降低了运输成本,有很好的经济利用价值.

    Abstract:

    Focusing on the issues that the number, location, and coverage of multi-regional logistics centers of distribution centers are unknown, an improved k-means clustering algorithm is proposed. Based on the urban economic gravity model, this algorithm combines the urban transportation distance with the indicators of household consumption capacity, redefines the distance factor of the similarity measure between objects. The idea of density is introduced into the k-means algorithm, and the concept of intra-class difference mean is raised to determine the optimal number of clusters. After the partition is implemented, the centroid method is used to determine the final distribution center in these areas. Finally, in case study, we analyze the location process of constructing logistics distribution centers in 37 cities in the western region, and compares them with the traditional k-means clustering results. The comparing result shows that the improved algorithm not only saves the delivery time, but also greatly reduces the transportation cost and has sound economic value.

    参考文献
    [1] Kanungo T, Mount DM, Netanyahu NS, et al. An efficient K-means clustering algorithm:Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):881-892.[doi:10.1109/TPAMI.2002.1017616
    [2] 朱培芬, 汉吉庆, 杨华龙, 等. 基于改进K-means算法的烟草配送区域划分. 物流工程与管理, 2009, 31(6):84-85.[doi:10.3969/j.issn.1674-4993.2009.06.034
    [3] 谷炜, 张群, 胡睿. 基于改进K-means聚类的物流配送区域划分方法研究. 中国管理信息化, 2010, 13(24):60-63.[doi:10.3969/j.issn.1673-0194.2010.24.028
    [4] 于晓寒, 王东. 基于带约束K-means聚类的城市快递配送区域划分. 哈尔滨商业大学学报(自然科学版), 2016, 32(5):631-634
    [5] 沈默, 戴冰洁. 物流配送中心重心法选址解析——以苏宁为例. 物流技术, 2015, 34(4):192-194.[doi:10.3969/j.issn.1005-152X.2015.04.058
    [6] 叶浔宇. 基于聚类和重心法的区域配送中心选址应用研究. 中国市场, 2009, (23):83-85.[doi:10.3969/j.issn.1005-6432.2009.23.026
    [7] 胡贤满, 张燕, 李珍萍. 带车辆路线安排的多配送中心选址问题的求解——基于SPSS和遗传算法. 物流技术, 2010, 29(1):83-86.[doi:10.3969/j.issn.1005-152X.2010.01.028
    [8] 孔继利, 顾苧, 孙欣, 等. 系统聚类和重心法在多节点配送中心选址中的研究. 物流技术, 2010, 29(3):83-85
    [9] 杨善林, 李永森, 胡笑旋, 等. K-means算法中的k值优化问题研究. 系统工程理论与实践, 2006, 26(2):97-101.[doi:10.3321/j.issn:1000-6788.2006.02.013
    相似文献
    引证文献
引用本文

鲁玲岚,秦江涛.基于改进的K-means聚类的多区域物流中心选址算法.计算机系统应用,2019,28(8):251-255

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-29
  • 最后修改日期:2019-02-26
  • 在线发布日期: 2019-08-14
  • 出版日期: 2019-08-15
文章二维码
您是第11201574位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号