基于残差的改进卷积神经网络图像分类算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省重大科技专项(2016B030305003)


Improved CNN Image Classification Algorithm Based on Residuals
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有深度残差网络作为一种卷积神经网络的变种,由于其良好的表现,被应用于各个领域,深度残差网络虽然通过增加神经网络深度获得了较高的准确率,但是在相同深度情况下,仍然有其他方式提升其准确率.本文针对深度残差网络使用了三种优化方法:(1)通过卷积网络进行映射实现维度填充;(2)构建基于SELU激活函数的残差模块(3)学习率随迭代次数进行衰减.在数据集Fashion-MNIST上测试改进后的网络,实验结果表明:所提出的网络模型在准确率上优于传统的深度残差网络.

    Abstract:

    The existing deep residual network, as a variant of a convolutional neural network, is used in various fields due to its sound performance. Although the depth residual network obtains higher accuracy by increasing the depth of the neural network, there are still other ways to improve the accuracy at the same depth. In this study, three optimization methods are used to optimize the depth residual network. (1) Dimension filling by mapping through a convolutional network. (2) Building a residual module based on the SELU activation function. (3) Learning rate decays with the number of iterations. Testing the improved network on the dataset Fashion-MNIST, the experimental results show that the proposed network model is superior to the traditional deep residual network in accuracy.

    参考文献
    相似文献
    引证文献
引用本文

高磊,范冰冰,黄穗.基于残差的改进卷积神经网络图像分类算法.计算机系统应用,2019,28(7):139-144

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-20
  • 最后修改日期:2019-02-21
  • 录用日期:
  • 在线发布日期: 2019-07-05
  • 出版日期: 2019-07-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号