基于改进LMD与GRU网络的短期燃气负荷预测
作者:
基金项目:

上海市科委项目(11510502400)


Short-Term Gas Load Forecasting Based on WT-LMD and GRU Neural Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对燃气负荷数据非线性、非平稳性的特点,本文提出一种基于改进的LMD算法与GRU神经网络的组合预测模型.模型首先利用改进后的LMD算法对燃气负荷数据进行序列分解,改进的LMD方法采用分段牛顿插值法代替传统的滑动平均值法来获得局部均值函数和包络估计函数,改善了传统LMD方法存在的过平滑问题.之后,再将得到的若干PF分量进行小波阈值去噪处理,获得有效的分量数据.最后,利用GRU神经网络分别预测各分量值,将它们相加得到最终的负荷预测值.仿真实验表明,提出的方法与单个GRU神经网络以及结合传统LMD算法的GRU网络相比,预测精度更高.

    Abstract:

    In view of the nonlinearity and non-stationarity of gas load data, this paper presents a combined forecasting model based on improved WT-LMD and GRU neural networks. Firstly, the model decomposes the gas load data by using the improved LMD algorithm, which improves the over-smoothing problem of that the traditional LMD method uses piecewise Newton interpolation instead of the traditional sliding average method to obtain local mean function and envelope estimation function. After that, the PF components are processed with wavelet threshold denoising to obtain effective component data. Finally, The GRU neural network is used to predict the value of each component separately, and the final predicted value of load is obtained by adding them. Simulation results show that the proposed method is more accurate than single GRU neural network and GRU network combined with traditional LMD algorithm.

    参考文献
    [1] Qu SL, Ma F. Prediction of macro city gas load on BP neural network theory. Proceedings of the 5th International Conference on Computer Science & Education. Hefei, China. 2010. 538-542.
    [2] Chen HL, Wang ZY, Yu P. Study on combination forecasting of gas daily load based on the generalized dynamic fuzzy neural network. Proceedings of the 33rd Chinese Control Conference. Nanjing, China. 2014. 6235-6239.
    [3] Yu F, Xu XZ. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Applied Energy, 2014, 134:102-113.[doi:10.1016/j.apenergy.2014.07.104
    [4] Yang Z, Liu Y, Miao ZB, et al. Application of neural-network in natural gas load forecasting. Gas & Heat, 2003, 23(6):331-332, 336
    [5] 杨昭, 金国民, 苗志彬. 基于模糊-RBF BP神经网络的天然气负荷预测. 暖通空调, 2005, 35(3):96-99
    [6] Ding ZQ. Application of RBF neural network to gas load forecasting. Gas & Heat, 2013, 33(5):43-46
    [7] Wang JS, Zhu QW. Short-term electricity load forecast performance comparison based on four neural network models. Proceedings of the 27th Chinese Control and Decision Conference. Qingdao, China. 2015. 2928-2932.
    [8] Musilek P, pelika?n E, Brabec T, et al. Recurrent neural network based gating for natural gas load prediction system. Proceedings of 2006 IEEE International Joint Conference on Neural Network Proceedings. Vancouver, BC, Canada. 2006. 3736-3741.
    [9] 宋超, 宋娟, 任军. 基于Elman神经网络的短期天然气负荷预测建模与仿真. 工业控制计算机, 2016, 29(4):87-88.[doi:10.3969/j.issn.1001-182X.2016.04.040
    [10] Zhang ZS, Gong WJ. Short-term load forecasting model based on quantum Elman neural networks. Mathematical Problems in Engineering, 2016, 2016:7910971
    [11] 陈亚, 李萍. 基于神经网络的短期电力负荷预测仿真研究. 电气技术, 2017, 18(1):26-29.[doi:10.3969/j.issn.1673-3800.2017.01.006
    [12] 董浩, 程鹏, 李玲玲. 深度学习算法在电力系统短期负荷预测中的应用. 电气时代, 2017, (2):82-84
    [13] 陈亮, 王震, 王刚. 深度学习框架下LSTM网络在短期电力负荷预测中的应用. 电力信息与通信技术, 2017, 15(5):8-11
    [14] Fu R, Zhang Z, Li L. Using LSTM and GRU neural network methods for traffic flow prediction. Proceedings of the 31st Youth Academic Annual Conference of Chinese Association of Automation. Wuhan, China. 2016. 324-328.
    [15] Shao HX, Soong BH. Traffic flow prediction with long short-term memory networks (LSTMs). Proceedings of 2016 IEEE Region 10 Conference. Singapore. 2016. 2986-2989.
    [16] Chen Z, Sun LX. Short-term electrical load forecasting based on deep learning LSTM networks. Electronic Technology, 2018, 47(1):39-41
    [17] 雷庆坤, 李生虎, 陈曦鸣, 等. 基于改进的LMD和GRNN组合风速预测. 合肥工业大学学报(自然科学版), 2015, 38(7):891-896.[doi:10.3969/j.issn.1003-5060.2015.07.006
    [18] 邹红波, 伏春林, 喻圣. 基于Akima-LMD和GRNN的短期负荷预测. 电工电能新技术, 2018, 37(1):51-56
    [19] 俞海军, 陈瑾怡. 三种插值方法的研究与比较. 河南科技, 2013, (20):210-211
    [20] 刘卫东, 刘尚合, 胡小锋, 等. 小波阈值去噪函数的改进方法分析. 高电压技术, 2007, 33(10):59-63.[doi:10.3969/j.issn.1003-6520.2007.10.014
    [21] 唐圣学, 付滔, 李志刚. 基于自适应小波阈值去噪和HT-LMD的电能质量扰动检测方法. 电测与仪表, 2017, 54(17):70-76.[doi:10.3969/j.issn.1001-1390.2017.17.013
    [22] 王旭. 改进小波阈值法在变形监测数据处理中的应用. 测绘与空间地理信息, 2018, 41(1):83-85.[doi:10.3969/j.issn.1672-5867.2018.01.022
    [23] 郑尊凯, 文畅, 谢凯, 等. ELMD联合粒子群优化小波阈值的语音去噪研究. 长江大学学报(自科版), 2018, 15(1):33-38.[doi:10.3969/j.issn.1673-1409.2018.01.007
    [24] 刘涛涛, 潘宏侠. 应用改进的LMD和小波降噪于滚动轴承故障诊断. 噪声与振动控制, 2014, 34(2):152-157.[doi:10.3969/j.issn.1006-1335.2014.02.035
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张彤,徐晓钟,王晓霞,杨超.基于改进LMD与GRU网络的短期燃气负荷预测.计算机系统应用,2019,28(6):29-37

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-10
  • 最后修改日期:2018-12-29
  • 在线发布日期: 2019-05-28
  • 出版日期: 2019-06-15
文章二维码
您是第11417379位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号