基于搜索空间大小的动态变异算子差分进化算法
作者:
基金项目:

国家自然科学基金(61672433);榆林职业技术学院神木校区2018年校级教科研课题重点项目(ZK-201801)


Differential Evolution with Dynamic Mutation Based on Search Space
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    差分进化算法(DE)是一种较新的进化计算技术,具有概念简单、易于实现、收敛速度快等优点,得到了广泛的关注和应用.为了解决经典DE计算开销大,参数设置与问题本身过于相关等缺陷,提出了一种改进的差分进化算法(IDE),它采用了一种动态变异算子,可根据进化代数的增加,基于搜索空间大小,实时地调整变异步长,从而提高算法的求解精度.通过在MATLAB仿真环境下对著名的基准测试函数分别进行求解,将改进后的算法和已有的多种优化算法进行比较,结果表明,改进的IDE算法性能明显优于已知的算法,证明动态变异是一种有效的改进思路.

    Abstract:

    Differential Evolution (DE) is a novel evolutionary computation technique, which has attracted much attention and wide applications for its simple concept, easy implementation and quick convergence. In order to tackle much overhead, problem-dependent parameters, etc and enhance the precision of classical DE, an Improved DE(IDE) algorithm is proposed by using an dynamical mutation operator adjusting the step size based on search space with evolution. Experiments of solving well-known benchmark functions in MATLAB show the improved approach outperforms existing algorithms, and dynamic mutation is a effective improvement ideas.

    参考文献
    [1] Storn R, Price K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4):341-359.[doi:10.1023/A:1008202821328
    [2] Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. Proceedings of the 2004 Congress on Evolutionary Computation. Portland, OR, USA. 2014. 1980-1987.
    [3] Liu JH, Lampinen J. A fuzzy adaptive differential evolution algorithm. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2005, 9(6):448-462
    [4] Qin AK, Suganthan PN. Self-adaptive differential evolution algorithm for numerical optimization. Proceedings of 2005 IEEE Congress on Evolutionary Computation. Edinburgh, Scotland, UK. 2005. 1785-1791.
    [5] Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution:A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 2006, 10(6):646-657.[doi:10.1109/TEVC.2006.872133
    [6] Yang ZY, Yao X, He JS. Making a difference to differential evolution. Siarry P, Michalewicz Z. Advances in Metaheuristics for Hard Optimization. Berlin, Heidelberg:Springer, 2018. 397-414.
    [7] Ali MM, Törn A. Population set-based global optimization algorithms:Some modifications and numerical studies. Computers and Operations Research, 2004, 31(10):1703-1725.[doi:10.1016/S0305-0548(03)00116-3
    [8] Sun JY, Zhang QF, Tsang EPK. DE/EDA:A new evolutionary algorithm for global optimization. Information Sciences, 2005, 169(3-4):249-262
    [9] Yao X, Liu Y, Lin GM. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 1999, 3(2):82-102.[doi:10.1109/4235.771163
    [10] He YC, Kou YZ, Shen CP. An improved differential evolution based on triple evolutionary strategy. Proceedings of the 3rd International Symposium on Intelligence Computation and Applications. Wuhan, China. 2008. 89-97.
    [11] Shi Y, Lan ZZ, Feng XH. Differential evolution based on improved learning strategy. Proceedings of the 10th Pacific Rim International Conference on Artificial Intelligence. Hanoi, Vietnam. 2008. 880-889.
    [12] 苗晓锋, 刘志伟. 一种基于混合策略的差分进化算法研究. 计算机应用与软件, 2019, 36(3):260-265
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

苗晓锋,刘志伟.基于搜索空间大小的动态变异算子差分进化算法.计算机系统应用,2019,28(6):209-212

复制
分享
文章指标
  • 点击次数:1692
  • 下载次数: 2563
  • HTML阅读次数: 1435
  • 引用次数: 0
历史
  • 收稿日期:2018-12-05
  • 最后修改日期:2018-12-25
  • 在线发布日期: 2019-05-28
  • 出版日期: 2019-06-15
文章二维码
您是第11418234位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号