基于CNN和LSTM的异构数据舆情分类方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Public Opinion Classification of Heterogeneous Data Based on CNN and LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着网络的发展,网络舆情数据呈现出爆炸式增长的趋势.使得数据类型越来越复杂,这些网络数据相互结合,构成了一个复杂的数据结构来表达数据的信息.在舆情数据中,通过单一类型的数据(图片、文本、语音等)越来越难以完整的表达数据信息.对于一个包含多种类型数据的网络信息,本文提出一种新的舆情分类模型,通过神经网络模型分别去学习不同类型信息的数据特征,对它们的特征融合后进行分类,通过这种方法实现数据信息更好地分类.在实验中,本文分别使用LSTM和CNN神经网络提取文本和图像数据特征,对二者特征融合后进行分类.结果证明,多种类型的数据特征进行融合后再分类,可以更好地实现对网络舆情数据信息的分类,提高了舆情信息分类的准确性.

    Abstract:

    With the development of the network, the public data which shows the trend of explosive growth, making the data type more and more complex. These network data combine with each other to form a complex network data structure to express the information of data. In this scenario, it is increasingly difficult to fully express data information through a single type of data (picture, text, voice, etc.). For the purpose of a network information that contains multiple types of data can be classified better, this study proposes a new public opinion classification model via neural network which is used to learn the data features respectively, and to classify their features after fusion. In the experiment, LSTM and CNN neural networks are used to extract text and image's features, fusing the two features to classified. The experimental results show that the reclassification after the fusion of various data features can better realize the classification and improve the accuracy of data information classification.

    参考文献
    相似文献
    引证文献
引用本文

黑富郁,王景中,赵林浩.基于CNN和LSTM的异构数据舆情分类方法.计算机系统应用,2019,28(6):141-147

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-22
  • 最后修改日期:2018-12-12
  • 录用日期:
  • 在线发布日期: 2019-05-28
  • 出版日期: 2019-06-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号