基于Vibe背景建模的运动目标检测算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省自然科学基金(2016JM8095)


Moving Target Detection Algorithm Based on Vibe Background Modeling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在运动目标检测的过程中,传统算法基于对单一特征背景进行建模,对背景描述不够准确,针对这个问题,本文提出融入颜色和边缘特征的Vibe背景建模.解决了三帧差分法在运动目标检测结果中出现噪声、断点与内部空洞等问题,并采用基于形态学处理方法对图像处理的结果进行补偿.为了保证运动目标检测的准确性,加快消除Vibe算法中第一帧出现“鬼影”现象,本文结合了Vibe算法和改进的三帧差分法对运动目标实现实时检测.通过研究分析与计算推导,实验中运动目标的检测结果表明,基于Vibe背景建模的改进三帧差分法检测效果明显优于三帧差分法.

    Abstract:

    In the process of moving target detection, the traditional algorithm is based on modeling a single feature background, and the background description is not accurate enough. To solve this problem, this study proposes an algorithm based on Vibe background modeling that incorporates color and edge features. The proposed algorithm solves the problem of noise, breakpoints, and internal pores in the moving target detection result of the three-frame difference algorithm, and compensates the image processing results based on the morphological processing algorithm. In order to ensure the accuracy of moving target detection and speed up the elimination of the "ghosting" phenomenon in the first frame of Vibe algorithm, this study combines Vibe algorithm and improved three-frame difference algorithm to realize real-time detection of moving targets. Through research analysis and computational derivation, the detection results of moving targets in the experiment show that the improved three-frame difference algorithm based on Vibe background modeling is better than the three-frame difference algorithm.

    参考文献
    相似文献
    引证文献
引用本文

丁哲,陆文总.基于Vibe背景建模的运动目标检测算法.计算机系统应用,2019,28(4):183-187

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-01
  • 最后修改日期:2018-11-23
  • 录用日期:
  • 在线发布日期: 2019-03-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号