机器学习实现心肌梗死的自动检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Machine Learning Achieves Automatic Detection of Myocardial Infarction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    心肌梗死是心肌细胞缺血性坏死,由于坏死程度不同,在心电图上表现不一,因此无法精确制定统一的评判标准.由于非典型心肌梗死特征不明显,目前的方法检测精度较低.本文针对心肌梗死类型的不同,为了提高非典型心肌梗死检测的准确率并且降低典型心肌梗死的时间复杂度,提出了BP神经网络与卷积神经网络结合的方法.首先,将原始ECG信号经过均值滤波平滑,去基线等处理,提取相关特征值,对于典型心肌梗死使用BP神经网络训练分类,而对于特征不明显非典型心肌梗死,按固定长度截取后利用卷积神经网络进行训练.为了进一步提高准确率,结合12导联数据进行分析.实验结果表明,该方法在心肌梗死的检测上,相对于其他方法提高了2%,特别是在非典型心肌梗死检测上明显改善.

    Abstract:

    Myocardial infarction is a vascular necrosis of myocardial cells. Because of the different degrees of necrosis, the performance on the electrocardiogram is different. Because the characteristics of atypical myocardial infarction are not obvious, the current method has low detection accuracy. In this study, a method combining BP neural network and convolutional neural network is proposed according to the type of disease to improve the accuracy of detecting atypical myocardial infarction and reduce the time complexity of typical myocardial infarction. First, the original ECG signal is filtered, smoothed, de-baselined, etc., and the relevant feature values are extracted. The BP neural network is used to train the classification. For the features that are not obvious, the convolutional neural network is used for training after intercepting at a fixed length. In order to further improve the accuracy, the 12-lead data was combined for analysis. The experimental results show that this method improves the detection of myocardial infarction by 2% compared with other methods, especially in the detection of atypical myocardial infarction.

    参考文献
    相似文献
    引证文献
引用本文

常战国,蒲宝明,李相泽,王帅,杨朔.机器学习实现心肌梗死的自动检测.计算机系统应用,2019,28(4):218-224

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-11
  • 最后修改日期:2018-10-30
  • 录用日期:
  • 在线发布日期: 2019-03-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号