改进指数平滑预测的虚拟机自适应迁移策略
作者:
基金项目:

国家自然科学基金(61472269);山西省重点研发计划(高新领域)(201703D121042-1)


Virtual Machine Adaptive Migration Strategy Based on Improved Exponential Smoothing Prediction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对云数据中心虚拟机频繁迁移问题对虚拟机迁移时机进行研究,提出一种基于改进指数平滑预测的虚拟机自适应迁移策略.该策略采用双阈值和预测相结合的方法,连续判断负载状态触发负载预测,然后,根据历史负载值自适应地预测下一时刻主机负载状态并触发虚拟机迁移,实现主机负载平衡,提高迁移效率,降低能耗.经实验表明,该方法在能耗和虚拟机迁移次数方面分别可降低约7.34%和58.55%,具有良好的优化效果.

    Abstract:

    In this work, the migration timing of virtual machines is studied for frequent migration of virtual machine in cloud data centers, an adaptive migration trigger method of virtual machine based on improved exponential smoothing prediction is proposed. A combination of dual threshold and prediction is applied to the strategy. First, the load prediction is triggered by continuously determining the load state. Then, the host load state at the next moment is adaptively predicted based on the historical load value, and finally the virtual machine migration is triggered. This method not only achieves host load balancing, but also improves migration efficiency and reduces energy consumption. Experiments show that the method reduces the energy consumption and the number of migration by about 7.34% and 58.55% respectively, which has sound optimization effect.

    参考文献
    [1] Ashraf A, Byholm B, Porres I. Distributed virtual machine consolidation:A systematic mapping study. Computer Science Review, 2018, 28:118-130.[doi:10.1016/j.cosrev.2018.02.003
    [2] Ahmad RW, Gani A, Hamid SHA, et al. Virtual machine migration in cloud data centers:A review, taxonomy, and open research issues. The Journal of Supercomputing, 2015, 71(7):2473-2515.[doi:10.1007/s11227-015-1400-5
    [3] 陈睦, 黄黎明, 李先锋. 云计算中虚拟机磁盘迁移时机优化策略. 计算机工程与设计, 2014, 35(2):525-530.[doi:10.3969/j.issn.1000-7024.2014.02.032
    [4] Zhu XY, Young D, Watson BJ, et al. 1000 Islands:Integrated Capacity and workload management for the next generation data center. Proceedings of 2008 International Conference on Autonomic Computing. Chicago, IL, USA. 2008. 172-181.
    [5] 陈强. 基于ARMA模型预测的云计算资源调度策略研究[硕士学位论文]. 重庆:重庆大学, 2016.
    [6] Zhu JR, Li J, Zhuang Y. Utility-based virtual cloud resource allocation model and algorithm in cloud computing. International Journal of Grid and Distributed Computing, 2015, 8(2):177-190.[doi:10.14257/ijgdc
    [7] Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurrency and Computation:Practice and Experience, 2012, 24(13):1397-1420.[doi:10.1002/cpe.v24.13
    [8] 李俊涛, 吴小开. 基于布朗指数法的虚拟机动态整合方法. 计算机工程与应用, 2016, 52(7):56-61.[doi:10.3778/j.issn.1002-8331.1404-0234
    [9] 王斌, 王勤为, 董科, 等. 基于二次指数平滑预测的虚拟机调度方法研究. 计算机应用研究, 2017, 34(3):723-726.[doi:10.3969/j.issn.1001-3695.2017.03.019
    [10] Papailias F, Thomakos D. EXSSA:SSA-based reconstruction of time series via exponential smoothing of covariance eigenvalues. International Journal of Forecasting, 2017, 33(1):214-229.[doi:10.1016/j.ijforecast.2016.08.004
    [11] 沈海迪, 万振凯. 基于指数平滑法的动态预测机制. 计算机技术与发展, 2017, 27(7):6-9.[doi:10.3969/j.issn.1673-629X.2017.07.002
    [12] Calheiros RN, Ranjan R, Beloglazov A, et al. CloudSim:A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software:Practice and Experience, 2011, 41(1):23-50.[doi:10.1002/spe.v41.1
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘春霞,王娜,党伟超,白尚旺.改进指数平滑预测的虚拟机自适应迁移策略.计算机系统应用,2019,28(3):158-164

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-09-12
  • 最后修改日期:2018-10-12
  • 在线发布日期: 2019-02-22
文章二维码
您是第11348701位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号