基于FTRL和XGBoost算法的产品故障预测模型
作者:

Product Fault Prediction Model Based on FTRL and XGBoost Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着智能化设备的日益更新和计算机储存数据能力的提升,制造业企业在其产品制造过程中产生了大量的流水线数据,如何充分利用这些数据一直是工业界的一个难题.本文根据制造业企业的真实大规模生产数据,通过对其进行细致的探索性数据分析,建立了一种基于FTRL和XGBoost算法的二分类产品故障预测模型,并根据适用于非平衡数据集的MCC (Matthews Correlation Coefficient)评价指标采用交叉验证方法对其进行优化.实验结果表明,该模型对于大规模(不仅样本量大,特征量也很大)正负样本非平衡的生产流水线数据集具有运行效率高,故障预测精度高的效果.基于此模型我们可以构建更智能的产品故障检测系统,有效降低企业运营成本的同时也带来了可观的利润增长.

    Abstract:

    With the update of intelligent equipment and the improvement of data storage capacity, manufacturing companies have achieved a large amount of pipeline data in the manufacturing process of their products. How to utilize these data has always been a difficult problem in the industry. Depending on the actual production data of manufacturing enterprises, this study establishes a product failure identification model based on FTRL (with Logistic Regression) and XGBoost algorithms through detailed exploratory data analysis, then uses cross-validation methods to optimize it according to MCC metric which is suitable for unbalanced datasets. The experimental results show that the model has a high efficiency and high accuracy of fault prediction for large-scale (not only large sample size but also large feature quantity) unbalanced production pipeline datasets. Based on this model, we can build a smarter product fault detection system, which effectively reduces the operating costs of the enterprise and also spurs profit growth.

    参考文献
    [1] 刘崇, 祝锡永. 基于BP神经网络的医保欺诈识别. 计算机系统应用, 2018, 27(6):34-39.[doi:10.15888/j.cnki.csa.006363
    [2] Li B, Chow MY, Tipsuwan Y, et al. Neural-network-based motor rolling bearing fault diagnosis. IEEE Transactions on Industrial Electronics, 2002, 47(5):1060-1069
    [3] 宋鹏, 胡永宏. 基于矩阵值因子模型的高维已实现协方差矩阵建模. 统计研究, 2017, 34(11):109-117
    [4] 刘俊, 王旭, 郝旭东, 等. 基于多维气象数据和PCA-BP神经网络的光伏发电功率预测. 电网与清洁能源, 2017, 33(1):122-129.[doi:10.3969/j.issn.1674-3814.2017.01.019
    [5] 宋乐见, 张晓龙, 陈同兴, 等. 基于KPCA与PSO-WLSSVM的顶吹熔炼系统喷枪寿命预测研究. 计算机与应用化学, 2017, 34(1):59-63
    [6] Fong SM, Wong R, Vasilakos AV. Accelerated PSO swarm search feature selection for data stream mining big data. IEEE Transactions on Services Computing, 2016, 9(1):33-45
    [7] Han HG, Chen QL, Qiao JF. An efficient self-organizing RBF neural network for water quality prediction. Neural Networks, 2011, 24(7):717-725.[doi:10.1016/j.neunet.2011.04.006
    [8] 车艳军. 模块化神经网络及其并行算法的工业系统预测[硕士学位论文]. 大连:大连理工大学, 2016.
    [9] 张丹峰. 基于LightGBM, XGBoost, ERT混合模型的风机叶片结冰预测研究[硕士学位论文]. 上海:上海师范大学, 2018.
    [10] McMahan HB. Follow-the-regularized-leader and mirror descent:Equivalence theorems and L1 Regularization. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, FL, USA. 2011. 525-533.
    [11] Chen TQ, Guestrin C. XGBoost:A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA. 2016. 785-794.
    [12] 李志杰, 李元香, 王峰, 等. 面向大数据分析的在线学习算法综述. 计算机研究与发展, 2015, 52(8):1707-1721
    [13] 冯少荣. 决策树算法的研究与改进. 厦门大学学报(自然科学版), 2007, 46(4):496-500.[doi:10.3321/j.issn:0438-0479.2007.04.013
    [14] Friedman JH. Greedy function approximation:A gradient boosting machine. The Annals of Statistics, 2001, 29(5):1189-1232
    [15] 周志华. 通过集成学习进行知识获取. 重庆邮电大学学报(自然科学版), 2008, 20(3):361-362
    [16] Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, NV, USA. 2012. 2951-2959.
    [17] Jurman G, Riccadonna S, Furlanello C. A comparison of MCC and CEN error measures in multi-class prediction. PLoS One, 2012, 7(8):e41882.[doi:10.1371/journal.pone.0041882
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨正森.基于FTRL和XGBoost算法的产品故障预测模型.计算机系统应用,2019,28(3):179-184

复制
分享
文章指标
  • 点击次数:1734
  • 下载次数: 3105
  • HTML阅读次数: 3870
  • 引用次数: 0
历史
  • 收稿日期:2018-09-12
  • 最后修改日期:2018-10-08
  • 在线发布日期: 2019-02-22
文章二维码
您是第11326053位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号