基于DE蝙蝠算法优化粒子滤波的目标跟踪
作者:
基金项目:

国家自然科学基金(61573095)


Target Tracking Based on DE Bat Algorithm for Particle Filter Optimization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在目标跟踪领域,粒子滤波技术有处理非线性非高斯问题的优势,但是标准粒子滤波在利用重采样方法解决退化现象时,会产生粒子贫化问题,导致滤波精度不稳定.针对这种问题,本文算法采用了差分进化蝙蝠算法对粒子滤波进行改进.本文算法将粒子表征为蝙蝠个体,蝙蝠种群通过调节频率、响度、脉冲发射率,伴随当前最优蝙蝠个体在目标图像区域进行搜索,并且可以动态决策是采用全局搜索还是进行局部搜索,从而提高粒子整体的质量和合理的分布;引进的差分进化策略可以增强蝙蝠个体跳出局部最优的能力.为了验证本文算法的优化性能,将本文算法和标准粒子滤波算法进行性能分析对比.实验结果表明本文算法滤波性能优于标准粒子滤波算法.

    Abstract:

    In the field of target tracking, particle filter technology has the advantage of dealing with nonlinear non-Gaussian problems. However, when the standard particle filter solves the degradation phenomenon by using the resampling method, the particle depletion problem will occur, resulting in unstable filter precision. To solve this problem, the algorithm uses the differential evolution bat algorithm to improve the particle filter. In this study, the particle is characterized as a bat individual. The bat population adjusts the frequency, loudness, and pulse emissivity, and the current optimal bat individual searches in the target image area, and can dynamically decide whether to use global search or local search to improve the particle. The overall quality and reasonable distribution; the introduction of differential evolution strategies can enhance the ability of bat individuals to jump out of local optimum. In order to verify the optimization performance of the proposed algorithm, the performances of the proposed algorithm and the standard particle filter algorithm are compared. Experimental results show that the filter performance of the proposed algorithm is better than the standard particle filter algorithm.

    参考文献
    [1] Yilmaz A, Javed O, Shah M. Object tracking:A survey. ACM Computing Surveys, 2006, 38(4):13.[doi:10.1145/1177352
    [2] Mekonnen AA, Lerasle F, Herbulot A. Cooperative passers-by tracking with a mobile robot and external cameras. Computer Vision and Image Understanding, 2013, 117(10):1229-1244.[doi:10.1016/j.cviu.2012.12.004
    [3] Xu BL, Lu ML. An ant-based stochastic searching behavior parameter estimate algorithm for multiple cells tracking. Engineering Applications of Artificial Intelligence, 2014, 30:155-167.[doi:10.1016/j.engappai.2013.11.010
    [4] Tian CN, Gao XB, Wei W, et al. Visual tracking based on the adaptive color attention tuned sparse generative object model. IEEE Transactions on Image Processing, 2015, 24(12):5236-5248.[doi:10.1109/TIP.2015.2479409
    [5] Ait Abdelali H, Essannouni F, Essannouni L, et al. Fast and robust object tracking via accept-reject color histogram-based method. Journal of Visual Communication and Image Representation, 2016, 34:219-229.[doi:10.1016/j.jvcir.2015.11.010
    [6] Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):564-577.[doi:10.1109/TPAMI.2003.1195991
    [7] Sun X, Yao HX, Lu XS. Dynamic multi-cue tracking using particle filter. Signal, Image and Video Processing, 2014, 8(S1):95-101.[doi:10.1007/s11760-014-0674-z
    [8] Mazinan AH, Amir-Latifi A. Applying mean shift, motion information and Kalman filtering approaches to object tracking. ISA Transactions, 2012, 51(3):485-497.[doi:10.1016/j.isatra.2012.02.002
    [9] Ait Abdelali H, Essannouni F, Essannouni L, et al. An adaptive object tracking using Kalman filter and probability product kernel. Modelling and Simulation in Engineering, 2016, 2016:2592368
    [10] Yi SY, He ZY, You XG, et al. Single object tracking via robust combination of particle filter and sparse representation. Signal Processing, 2015, 110:178-187.[doi:10.1016/j.sigpro.2014.09.020
    [11] 张琪, 胡昌华, 乔玉坤. 基于权值选择的粒子滤波算法研究. 控制与决策, 2008, 23(1):117-120.[doi:10.3321/j.issn:1001-0920.2008.01.026
    [12] Li TC, Sattar TP, Sun SD. Deterministic resampling:Unbiased sampling to avoid sample impoverishment in particle filters. Signal Processing, 2012, 92(7):1637-1645.[doi:10.1016/j.sigpro.2011.12.019
    [13] Stano PM, Lendek Z, Babuška R. Saturated particle filter:Almost sure convergence and improved resampling. Automatica, 2013, 49(1):147-159.[doi:10.1016/j.automatica.2012.10.006
    [14] Yu YH, Zheng XY. Particle filter with ant colony optimization for frequency offset estimation in OFDM systems with unknown noise distribution. Signal Processing, 2011, 91(5):1339-1342.[doi:10.1016/j.sigpro.2010.12.009
    [15] Zhong J, Fung YF. Case study and proofs of ant colony optimisation improved particle filter algorithm. IET Control Theory & Applications, 2012, 6(5):689-697
    [16] Xian WM, Long B, Li M, et al. Prognostics of lithium-ion batteries based on the verhulst model, particle swarm optimization and particle filter. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1):2-17.[doi:10.1109/TIM.2013.2276473
    [17] Leinonen M, Codreanu M, Juntti M. Distributed joint resource and routing optimization in wireless sensor networks via alternating direction method of multipliers. IEEE Transactions on Wireless Communications, 2013, 12(11):5454-5467.[doi:10.1109/TWC.2013.100213.121227
    [18] 邱雪娜, 刘士荣, 吕强. 基于信息分享机制的粒子滤波算法及其在视觉跟踪中的应用. 控制理论与应用, 2010, 27(12):1724-1730
    [19] 田梦楚, 薄煜明, 陈志敏, 等. 萤火虫算法智能优化粒子滤波. 自动化学报, 2016, 42(1):89-97
    [20] Yang XS. A new metaheuristic bat-inspired algorithm. González JR, Pelta DA, Cruz C, et al. Nature Inspired Cooperative Strategies For Optimization. Berlin, Heidelberg:Springer, 2010. 65-74.
    [21] 陈志敏, 田梦楚, 吴盘龙, 等. 基于蝙蝠算法的粒子滤波法研究. 物理学报, 2017, 66(5):050502
    [22] Neuimin OS, Zhuk SY. Sequential detection of target trajectory tracking loss using the decision statistics of pips. Radioelectronics and Communications Systems, 2014, 57(8):352-361.[doi:10.3103/S0735272714080032
    [23] Son HS, Park JB, Joo YH. Segmentalized FCM-based tracking algorithm for zigzag maneuvering target. International Journal of Control, Automation and Systems, 2015, 13(1):231-237.[doi:10.1007/s12555-013-0406-0
    [24] Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4):341-359.[doi:10.1023/A:1008202821328
    引证文献
引用本文

李龙龙,周武能,闾斯瑶.基于DE蝙蝠算法优化粒子滤波的目标跟踪.计算机系统应用,2019,28(2):24-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-07-12
  • 最后修改日期:2018-08-09
  • 在线发布日期: 2019-01-28
  • 出版日期: 2019-02-15
文章二维码
您是第11349737位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号