面向车辆检测的扩张全卷积神经网络
作者:

Dilated Fully Convolutional Network with Grouped Proposals for Vehicle Detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年来,深度学习方法被广泛用来解决车辆检测问题并取得了显著的成果,然而,当车辆尺寸较小时,当前深度学习算法的检测丢失率仍然很高.为了解决这个问题,本文提出了一种基于组合目标框提取结构的扩张全卷积神经网络(Dilated Fully Convolutional Network with Grouped Proposals,DFCN-GP).具体提出了一种结合低层特征和高层特征的组合网络模型用于生成目标框,其中低层特征对小目标更加敏感.此外,为保留更多的细节信息,基于扩张卷积思想,增加了网络最后一层卷积层的大小和感受野,用于目标框的提取和车辆检测.通过控制变量的对比试验,对基于组合方式的目标框提取网络和扩张卷积层的有效性进行了验证.本文提出的算法模型在公开数据集UA-DETRAC上性能优异.

    Abstract:

    Although deep learning based vehicle detection approaches have achieved remarkable success recently, they are still likely to miss comparatively small-sized vehicle. To address this problem, we propose a novel Dilated Fully Convolutional Network with Grouped Proposals (DFCN-GP) for vehicle detection. Specifically, we invented a grouped network structure to combine feature maps from both lower and higher level convolutional layers for the generation of object proposal and focusing more on lower level features, which are more sensitive to discovering small object. In addition, we increase the size and reception field of the feature map in the last convolutional layers to keep more detailed information via dilated convolution, which is used in both object proposal and vehicle detection sub-networks. In the experiment, we conducted ablation studies to demonstrate the effectiveness of the grouped proposals and dilated convolutional layer. We also show that the proposed approach outperforms other state-of-the-art methods on the UA-DETRAC vehicle detection.

    参考文献
    [1] 董春利, 董育宁. 基于视频的车辆检测与跟踪算法综述. 南京邮电大学学报(自然科学版), 2009, 29(2):88-94.[doi:10.3969/j.issn.1673-5439.2009.02.018
    [2] Kong T, Yao AB, Chen YR, et al. HyperNet:Towards accurate region proposal generation and joint object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 845-853.
    [3] Wang L, Lu Y, Wang H, et al. Evolving boxes for fast vehicle detection. Proceedings of 2017 IEEE International Conference on Multimedia and Expo. Hong Kong, China. 2017. 1135-1140.
    [4] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    [5] Yu F, Koltun V, Funkhouser T. Dilated residual networks. arXiv preprint arXiv:1705.09914, 2017.
    [6] Ghodrati A, Diba A, Pedersoli M, et al. DeepProposal:Hunting objects by cascading deep convolutional layers. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015. 2578-2586.
    [7] Ranjan R, Patel VM, Chellappa R. HyperFace:A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. arXiv preprint arXiv:1603.01249, 2016.
    [8] Dai JF, Li Y, He KM, et al. R-FCN:Object detection via region-based fully convolutional networks. Advances in Neural Information Processing Systems 29. Springer. 2016. 379-387.
    [9] Girshick R. Fast R-CNN. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015. 1440-1448.
    [10] Wen LY, Du DW, Cai ZW, et al. UA-DETRAC:A new benchmark and protocol for multi-object detection and tracking. arXiv preprint arXiv:1511.04136, 2015.
    [11] Felzenszwalb PF, Girshick R, McAllester D, et al. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645.[doi:10.1109/TPAMI.2009.167
    [12] Dollár P, Appel R, Belongie S, et al. Fast feature pyramids for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8):1532-1545.[doi:10.1109/TPAMI.2014.2300479
    [13] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014. 580-587.
    [14] Ren SQ, He KM, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks. Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada. 2015. 91-99.
    [15] Cai ZW, Saberian M, Vasconcelos N. Learning complexity-aware cascades for deep pedestrian detection. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015. 3361-3369.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程雅慧,蔡烜,冯瑞.面向车辆检测的扩张全卷积神经网络.计算机系统应用,2019,28(1):107-112

复制
分享
文章指标
  • 点击次数:1800
  • 下载次数: 2316
  • HTML阅读次数: 1486
  • 引用次数: 0
历史
  • 收稿日期:2018-07-31
  • 最后修改日期:2018-08-27
  • 在线发布日期: 2018-12-27
文章二维码
您是第11203484位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号