结合单高斯与光流法的无人机运动目标检测
作者:

Detection of Moving Objects in UAV Video Based on Single Gaussian Model and Optical Flow Analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对无人机场景下运动目标检测对实时性要求高,运动背景、环境光照易变化等问题,提出一种结合单高斯与光流法的运动目标检测算法.首先,对运动相机捕捉的图像采用改进的单高斯模型进行背景建模,并融合前一帧图像的多个高斯模型来进行运动补偿,然后,将得到的前景图像作为掩模来提取特征点和进行光流跟踪,并对稀疏特征点的运动轨迹进行层次聚类.实验结果表明,该算法能有效地处理运动相机造成的前景对背景模型的干扰,背景建模速度快,对光照变化不敏感,检测出的目标接近真实目标.

    Abstract:

    To meet the real-time demand of moving object detection in Unmanned Air Vehicle (UAV), and to cope with the problems of moving background and variable illumination, a novel moving object detection technique based on Single Gaussian Model (SGM) and optical flow is presented. First, an improved SGM is applied to model the background of the image captured by moving camera, and then the corresponding models of previous frame are fused to compensate the motion of camera. Second, the obtained foreground is used as a mask to extract feature points to calculate optical flow, and then these sparse points are clustered to detect the objects. Experimental results demonstrated the effectiveness of the proposed approach in preventing the background model of SGM from being contaminated by the foreground, as well as dealing with illumination changes. It can also update background model quickly and obtain moving objects precisely.

    参考文献
    [1] 仝小敏. 航拍视频运动目标检测与跟踪方法研究[博士学位论文]. 西安:西北工业大学, 2015.
    [2] 徐诚, 黄大庆. 基于鲁棒M估计和Mean Shift聚类的动态背景下运动目标检测. 光子学报, 2014, 43(1):136-141
    [3] 齐美彬, 汪巍, 蒋建国, 等. 动态场景下的快速目标检测算法. 电子测量与仪器学报, 2011, 25(9):756-761
    [4] Zamalieva D, Yilmaz A, Davis JW. A multi-transformational model for background subtraction with moving cameras. 13th European Conference on Computer Vision. Zurich, Switzerland. 2014. 803-817.
    [5] Lim J, Han B. Generalized background subtraction using superpixels with label integrated motion estimation. In:Fleet D, Pajdla T, Schiele B, et al. Computer Vision-ECCV 2014. Cham:Springer, 2014, 8693:173-187.
    [6] Kwak S, Lim T, Nam W, et al. Generalized background subtraction based on hybrid inference by belief propagation and Bayesian filtering. International Conference on Computer Vision. Barcelona, Spain. 2011. 2174-2181.
    [7] Minematsu T, Uchiyama H, Shimada A, et al. Adaptive search of background models for object detection in images taken by moving cameras. 2015 IEEE International Conference on Image Processing. Quebec City, QC, Canada. 2015. 2626-2630.
    [8] Kim J, Wang XF, Wang H, et al. Fast moving object detection with non-stationary background. Multimedia Tools and Applications, 2013, 67(1):311-335.[doi:10.1007/s11042-012-1075-3
    [9] Kim SW, Yun K, Yi KM, et al. Detection of moving objects with a moving camera using non-panoramic background model. Machine Vision and Applications, 2013, 24(5):1015-1028.[doi:10.1007/s00138-012-0448-y
    [10] Yi KM, Yun K, Kim SW, et al. Detection of moving objects with non-stationary cameras in 5.8 ms:Bringing motion detection to your mobile device. 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Portland, OR, USA. 2013. 27-34.
    [11] Shah AJ. Optical flow for motion detection with moving background.https://www.researchgate.net/publication/282913643. 2015.
    [12] Kurnianggoro L, Shahbaz A, Jo KH. Dense optical flow in stabilized scenes for moving object detection from a moving camera. 201616th International Conference on Control, Automation and Systems. Gyeongju, South Korea. 2016. 704-708.
    [13] 何伟, 张国云, 吴健辉, 等. 结合运动边界和稀疏光流的运动目标检测方法. 小型微型计算机系统, 2017, 38(3):635-639
    [14] Tomasi C, Kanade T. Detection and tracking of point features. Technical Report, 1991, 91(21):9795-9802
    [15] Rosten E, Drummond T. Machine learning for high-speed corner detection. 9th European Conference on Computer Vision. Graz, Austria. 2006. 430-443.
    [16] 王慧贤, 勒惠佳, 王娇龙, 等. K均值聚类引导的遥感影像多尺度分割优化方法. 测绘学报, 2015, 44(5):526-532
    [17] 李果家, 李显凯. 基于稀疏光流场分割的运动目标实时检测算法. 计算机工程与设计, 2017, 38(11):3029-3035
    [18] VIVID-PETS 2005. http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html.
    [19] Robicquet A, Sadeghian A, Alahi A, et al. Learning social etiquette:human trajectory understanding in crowded scenes. 14th European Conference on Computer Vision. Amsterdam, The Netherlands. 2016. 549-565.
    [20] LIMU Dataset. http://limu.ait.kyushu-u.ac.jp/dataset/en.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

范长军,文凌艳,毛泉涌,祝中科.结合单高斯与光流法的无人机运动目标检测.计算机系统应用,2019,28(2):184-189

复制
分享
文章指标
  • 点击次数:1912
  • 下载次数: 3068
  • HTML阅读次数: 2403
  • 引用次数: 0
历史
  • 收稿日期:2018-07-16
  • 最后修改日期:2018-08-09
  • 在线发布日期: 2019-01-28
  • 出版日期: 2019-02-15
文章二维码
您是第11349737位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号