基于GloVe模型的词向量改进方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2017YFC0803300);北京市教委项目(KM201810005023,KM201810005024,KZ201610005009);国家自然科学基金(61402449,61703013,91546111,91646201);北京市科技计划项目(Z161100001116072)


Improved Word Representation Based on GloVe Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    使用词向量表示方法能够很好的捕捉词语的语法和语义信息,为了能够提高词向量语义信息表示的准确性,本文通过分析GloVe模型共现矩阵的特点,利用分布式假设,提出了一种基于GloVe词向量训练模型的改进方法.该方法主要通过对维基百科统计词频分析,总结出过滤共现矩阵中无关词和噪声词的一般规律,最后给出了词向量在词语类比数据集和词语相关性数据集的评估结果.实验表明,在相同的实验环境中,本文的方法能够有效的缩短词向量的训练时间,并且在词语语义类比实验中准确率得到提高.

    Abstract:

    Word vector representation is a sound way to catch the grammatical and semantic information of words. In order to improve the accuracy of the semantic information of the word, this study proposes an improved training method model based on the GloVe by analyzing the characteristics of the co-occurrence matrix and using the distributed hypothesis. This method summarizes the general rules of irrelevant words and noise words in the co-occurrence matrix from analyzing the word frequency of Wikipedia statistics. Finally, we give the evaluation results of word vector in word analogy dataset and word correlation dataset. Experiments show that the method presented in this paper can effectively shorten the training time and the accuracy of the word semantic analogy experiment is improved in the same experimental environment.

    参考文献
    相似文献
    引证文献
引用本文

陈珍锐,丁治明.基于GloVe模型的词向量改进方法.计算机系统应用,2019,28(1):194-199

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-06-04
  • 最后修改日期:2018-06-27
  • 录用日期:
  • 在线发布日期: 2018-12-27
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号