基于分块CBP特征和稀疏表示的三维人脸表情识别
作者:
基金项目:

国家重点研发计划课题(SQ2017YFC170323);北京市教委科技项目(2017YFC1703302)


3D Facial Expression Recognition Using Block CBP Features and Sparse Representation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    在三维人脸表情识别中,基于局部二值模式(LBP)算子算法与传统的特征提取算法相比具有特征提取准确、精细、光照不变性等优点,但也有直方图维数高、判别能力差、冗余信息大的缺点.本文提出一种通过对整幅图像进行多尺度分块提取CBP特征的CBP算法,能够更有效的提取分类特征.再结合使用稀疏表达分类器实现对特征进行分类和识别.经实验结果表明,与传统LBP算法和SVM分类识别算法对比,文中算法用于人脸表情的识别的识别率得到大幅度提高.

    Abstract:

    In 3D facial expression recognition, operator algorithm based on LBP has the characteristics of accurate, precise, and invariable illumination, while it also has the disadvantages of high dimensions of histogram, poor discriminating ability, and large redundant information, comparing with traditional feature extraction method. In this study, a CPB algorithm is proposed based on multi-scaled block CBP feature extraction system for the classification of facial expressions that are represented in 3D, designating to extract features more efficiently. Then, sparse expression classifier is used to classify and identify the features. The experimental results demonstrate that the facial expression recognition rate has been greatly improved, comparing with traditional LBP algorithm and SVM algorithm.

    参考文献
    [1] Chen JJ, Zhao Z, Sun H, et al. Facial expression recognition based on PCA reconstruction. 20105th International Conference on Computer Science & Education. Hefei, China. 2010. 195-198.
    [2] Edwards GJ, Taylor CJ, Cootes TF. Interpreting face images using active appearance model. Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition. Nara, Japan. 1998. 300-305.
    [3] Zhang HH, Zhang BL, Huang WM, et al. Gabor wavelet associative memory for face recognition. IEEE Transactions on Neural Networks, 2005, 16(1):275-278.[doi:10.1109/TNN.2004.841811
    [4] Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1):51-59.[doi:10.1016/0031-3203(95)00067-4
    [5] Heisele B, Serre T, Poggio T. A component-based framework for face detection and identification. International Journal of Computer Vision, 2007, 74(2):167-181.[doi:10.1007/s11263-006-0006-z
    [6] Zaidi NA, Squire DM. Local adaptive SVM for object recognition. 2010 International Conference on Digital Image Computing:Techniques and Applications. Sydney, NSW, Australia. 2010. 196-201.
    [7] Rázuri JG, Sundgren D, Rahmani R, et al. Automatic emotion recognition through facial expression analysis in merged images based on an artificial neural network. 201312th Mexican International Conference on Artificial Intelligence. Mexico City, Mexico. 2013. 85-96.
    [8] Wright J, Yang AY, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227.[doi:10.1109/TPAMI.2008.79
    [9] Mallat SG, Zhang ZF. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.[doi:10.1109/78.258082
    [10] Pati YC, Rezaiifar R, Krishnaprasad PS. Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition. Proceedings of 27th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA. 1993. 40-44.
    [11] Cai TT, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Transactions on Information Theory, 2011, 57(7):4680-4688.[doi:10.1109/TIT.2011.2146090
    [12] Yin LJ, Wei XZ, Sun Y, et al. A 3D facial expression database for facial behavior research. 7th International Conference on Automatic Face and Gesture Recognition. Southampton, UK. 2006. 211-216.
    [13] Wang J, Yin LJ, Wei XZ, et al. 3D facial Expression recognition based on primitive surface feature distribution. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA. 2006. 1399-1406.
    [14] Berretti S, Ben Amor B, Daoudi M, et al. 3D facial expression recognition using SIFT descriptors of automatically detected keypoints. The Visual Computer, 2011, 27:1021-1036.[doi:10.1007/s00371-011-0611-x
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马杰,蔡轶珩,盛楠.基于分块CBP特征和稀疏表示的三维人脸表情识别.计算机系统应用,2019,28(2):196-200

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-05-22
  • 最后修改日期:2018-06-15
  • 在线发布日期: 2019-01-28
  • 出版日期: 2019-02-15
文章二维码
您是第11349737位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号