基于混合模型的新闻事件要素提取方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学青年基金项目(61503312)


News Event Element Extraction Method Based on Mixed Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了帮助读者从大量新闻报道信息中迅速地把握其主要内容,本文分析了事件要素对新闻主要内容的影响,结合新闻报道的基本原则和要求,提出了一种基于混合模型的事件要素提取方法.该方法首先对新闻数据中识别的实体进行加权,然后使用依存句法树分析实体在新闻事件中扮演的角色,并对关于要素的指代现象进行消解,最终融合频率及角色关系对实体加权的方法进行改进,有效地提取出新闻事件关联性较为重要的要素.实验结果表明,本文所述方法能够准确地提取出与新闻事件关联性较强的事件要素,提高了读者快速筛选新闻事件要素的效率.

    Abstract:

    In order to help readers quickly grasp the main content of a large amount of news report information, this paper analyzes the impact of event elements on the main news content, and combines the basic principles and requirements of news reports, proposes a method of extracting event elements based on hybrid model. The proposed method first weighs the entities recognized in the news data, and then uses the dependency syntax tree to analyze the role of entities in news events, and dispels the reference phenomenon of elements. Finally, the fusion frequency and role relationship are used to improve the entity weighting method and effectively extract the important elements of news event relevance. The experimental results show that the method described in this study can accurately extract event elements with strong relevance to news events and improve the efficiency of readers' rapid selection of news event elements.

    参考文献
    相似文献
    引证文献
引用本文

虞金中,杨先凤,陈雁,李娟.基于混合模型的新闻事件要素提取方法.计算机系统应用,2018,27(12):169-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-05-03
  • 最后修改日期:2018-05-24
  • 录用日期:
  • 在线发布日期: 2018-12-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号