基于联合最大后验概率的语音增强算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51575236)


Speech Enhancement Based on Joint Maximum A Posteriori Probability
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统谱减法存在的算法缺陷,提出一种基于联合最大后验概率的改进谱减法.传统谱减法通过获取带噪语音与噪声的幅度差值,并提取带噪语音的相位信息进行语音信号重建.该方法因为谱相减产生“音乐噪声”,并因为相位估计不准确,导致低信噪比下信号增强效果不理想.为此,引入多频带谱减法和相位估计,通过划分频谱,分别在子频带进行谱减法,有效降低“音乐噪声”的影响;同时构建基于最大后验概率的相位估计器,联合信号幅度函数和相位函数,通过多次交替迭代得到相位估值.实验结果表明,相对于传统谱减法,在低信噪比下该算法有效提高增强语音的质量感知和可懂度.

    Abstract:

    In order to solve the defect of the traditional spectral subtraction algorithm, an improved spectral subtraction based on the joint maximum a posteriori probability is proposed. The traditional spectral subtraction was used to reconstruct the speech via obtaining difference of the amplitude between the noisy speech and noise and extracting the phase of the noisy speech. "Music noise" was produced by the method, and the effect of signal enhancement under low signal-to-noise ratio was not ideal because of inaccurate phase estimation. For this, the multiband spectral subtraction and phase estimation were introduced, and spectral subtraction was carried out in the subbands which were obtained by spectrum division. And it has worked well on reducing the influence of "music noise". Meanwhile, the phase estimator based on the maximum a posteriori probability was constructed which was obtained by combining the amplitude function and thephase function of the signal and alternate iteration. The experimental results show that, compared with the traditional spectral subtraction, the proposed algorithm has performed better in terms of the quality perception and intelligibility of the enhanced speech at low signal to noise ratio.

    参考文献
    相似文献
    引证文献
引用本文

李婉玲,张秋菊.基于联合最大后验概率的语音增强算法.计算机系统应用,2018,27(12):163-168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-05-02
  • 最后修改日期:2018-05-24
  • 录用日期:
  • 在线发布日期: 2018-12-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号