OFDM多载波系统中子载波调制识别新方法
作者:
基金项目:

国家自然科学基金(61671375)


OFDM Signal Subcarrier Recognition in OFDM Multi-Carrier System
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [18]
  • | | |
  • 文章评论
    摘要:

    针对OFDM (Orthogonal Frequency Division Multiplexing)信号在非合作通信系统中,具有多种子载波调制类型且有些子载波调制类型难以被调制识别的问题,提出了一种对其子载波分类识别的新方法.此方法结合并改进了星座图聚类投影法和对数似然函数(Logarithmic Likelihood Function,LLF)算法,先对不同子载波调制信号进行星座图聚类投影从而识别出常规子载波调制类型,再进一步通过对数似然函数对常规子载波调制类型和偏移正交(Offset QAM,OQAM)调制类型进行分类识别,并在此基础上推导出子载波组的对数似然函数使其计算结果值更容易被判决门限分类.理论推导和计算机仿真结果表明这种方法能在信噪比高于15 dB的情况下完全识别子载波的调制方式.

    Abstract:

    A new method of classifying and identifying sub-carriers is proposed for Orthogonal Frequency Division Multiplexing (OFDM) signals in non-cooperative communication systems, because there are many sub-carrier modulation types and some sub-carrier modulation types are difficult to be identified in OFDM signals. This method combined and improved the constellation cluster projection method and Logarithmic Likelihood Function (LLF) algorithm. The method first performed constellation clustering projection on different subcarrier modulation signals to recognize the common subcarrier modulation, then calculated the LLF to recognize Offset QAM (OQAM) subcarrier signal and common subcarrier signals. On the basis of the previous step, the LLF of subcarrier group was derived to make the LLF calculation easier to be classified by the decision threshold. Theoretical deduction and computer simulation results showed that the method could recognize the subcarrier modulation when the SNR is 15 dB.

    参考文献
    [1] 张卫钢. 通信原理与通信技术. 3版. 西安:西安电子科技大学出版社, 2012. 4.
    [2] Anoh K, Tanriover C, Adebisi B. On the optimization of iterative clipping and filtering for PAPR reduction in OFDM systems. IEEE Access, 2017, 5:12004-12013. doi:10.1109/ACCESS.2017.2711533
    [3] 范文兵, 范程龙, 李海涛, 等. 一种新的OFDM-OQAM的信道估计方法. 郑州大学学报(工学版), 2014, 35(1):112-115, doi:10.3969/j.issn.1671-6833.2014.01.026
    [4] 武继刚, 张新想, 陈龙. 协作认知无线电网络资源双拍卖算法研究. 华中科技大学学报(自然科学版), 2017, 45(12):14-19.
    [5] Firdaoussi M, Ghennioui H, El Kamili M. Recognition of OFDM and SCLD signals based on the generalized mean ambiguity function. Proceedings of 2016 International Conference on Wireless Networks and Mobile Communications. Fez, Morocco. 2016. 230-234.
    [6] 史文娟, 冯全源. 基于谱分析的OFDM调制识别新方法. 压电与声光, 2015, 37(2):297-300.
    [7] Li JQ, Anwar S, Zhang XL, et al. Autocorrelation based modulation recognition of PSK signals for OFDM in underwater acoustics communication. Proceedings of the 201815th International Bhurban Conference on Applied Sciences and Technology. Islamabad, Pakistan. 2018. 751-756.
    [8] Tekbiyik K, Alakoca H, Tuğrel HB, et al. Identification of OFDM signals using cyclic autocorrelation function. Proceedings of 2016 National Conference on Electrical, Electronics and Biomedical Engineering. Bursa, Turkey. 2016. 622-626.
    [9] 孔五艳, 朱灿焰. 基于聚类分析的M-QAM信号识别. 通信技术, 2012, 45(12):77-81. doi:10.3969/j.issn.1002-0802.2012.12.024
    [10] Yadav YK, Jajoo G, Yadav SK. Modulation scheme detection of blind signal using constellation graphical representation. Proceedings of 2017 International Conference on Computer, Communications and Electronics. Jaipur, India. 2017. 231-235.
    [11] Wang F, Wang YC, Chen X. Graphic constellations and DBN based automatic modulation classification. Proceedings of the 2017 IEEE 85th Vehicular Technology Conference. Sydney, NSW, Australia. 2017. 1-5.
    [12] Xie LJ, Wan Q. Automatic modulation recognition for phase shift keying signals with compressive measurements. IEEE Wireless Communications Letters, 2018, 7(2):194-197. doi:10.1109/LWC.2017.2764078
    [13] Wang L, Li YB. Constellation based signal modulation recognition for MQAM. Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks. Guangzhou, China. 2017. 826-829.
    [14] 杨发权, 李赞, 罗中良. 基于聚类与神经网络的无线通信联合调制识别新方法. 中山大学学报(自然科学版), 2015, 54(2):24-29.
    [15] Hamkins J, Simon MK. 用于深空的自主软件无线电接收机. 闫春生, 译. 北京:清华大学出版社, 2009. 8.
    [16] Bahrani S, Derakhtian M, Zolghadrasli A. Performance analysis of a low-complexity MAP algorithm for automatic modulation classification in adaptive OFDM systems. IET Communications, 2016, 10(17):2363-2371. doi:10.1049/iet-com.2015.0768
    [17] Yucek T, Arslan H. A novel sub-optimum maximum-likelihood modulation classification algorithm for adaptive OFDM systems. Proceedings of 2004 IEEE Wireless Communications and Networking Conference. Atlanta, GA, USA. 2004. 739-744.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘高辉,许铭涛. OFDM多载波系统中子载波调制识别新方法.计算机系统应用,2018,27(11):120-127

复制
分享
文章指标
  • 点击次数:1595
  • 下载次数: 3454
  • HTML阅读次数: 1352
  • 引用次数: 0
历史
  • 收稿日期:2018-03-13
  • 最后修改日期:2018-04-10
  • 在线发布日期: 2018-10-24
文章二维码
您是第11204110位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号