改进相关干涉仪算法在DOA估计中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年科学基金(61601519);电子测试技术重点实验室基金(614200105011702)


Application of Improved Correlation Interferometer Algorithm in DOA Estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    相关干涉仪算法(Correlation Interferometer Algorithm,CIA)是波达方位(Direction Of Arrival,DOA)估计中常用的算法,但是阵列的长短基线导致了该算法在测向中存在基线镜像对称和相位模糊问题.针对以上问题,本文提出了一种基于象限分类的改进相关干涉仪算法.首先,将信号到达各阵元的时间差转化为相位差,同时将得到的相位差与360°作比,记录得到的整数和余数.然后对余数进行象限分类,之后用传统的相关干涉仪算法求解得到信号的初始估计值,最后根据逆运算求解信号的最终估计值.实验仿真表明,该算法不仅解决了基线镜像对称和相位模糊问题,而且提高了信号估计的精度,降低了计算复杂度,提高了测向的实时性.因此在波达方位估计上具有很高的参考价值.

    Abstract:

    The Correlation Interferometer Algorithm (CIA) is commonly used in the Direction Of Arrival (DOA) estimation. But when it realizes the direction finding, the long and short baselines in the array lead to the problems of baseline symmetry and phase ambiguity. An improved correlation interferometer algorithm based on quadrant classification is proposed. First, the time difference of signals arriving at each element is converted into phase difference, as well as the obtained phase difference is compared with 360°, and the obtained integer and remainder are recorded. Then the remainder is quadrant classified, after which the initial estimated value of the signal is obtained by using a traditional correlation interferometer algorithm. Finally, the final estimate value of the signal is calculated based on the inverse operation. Experimental simulations show that the improved algorithm successfully solves the problems of baseline mirror symmetry and phase ambiguity. Moreover, the accuracy of signal estimation is improved, the computational complexity is reduced, and the real-time performance of direction finding is improved. Therefore, it has significant value in the DOA estimation.

    参考文献
    相似文献
    引证文献
引用本文

蔡丽萍,胡家良,陈海华,田慧.改进相关干涉仪算法在DOA估计中的应用.计算机系统应用,2018,27(12):129-135

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-26
  • 最后修改日期:2018-05-17
  • 录用日期:
  • 在线发布日期: 2018-12-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号