基于相似路径的位置隐私保护方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Location Privacy Protection Method Based on Similar Path
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前,基于位置隐私的保护技术大多针对用户进行单次LBS请求进行设计,只考虑保护当前真实用户所在位置,而忽略了真实用户连续多次查询时存在的协作用户交叠导致真实用户位置泄露的情况,进而攻击者可根据真实用户位置点进行轨迹预测,最终获取真实用户运动轨迹,导致真实用户位置隐私的泄露.本文针对上述情况,在用户发起连续LBS请求时,提出了基于相似路径的位置隐私保护方法(LPBSP),首先通过网格结构中历史用户密度进行一定均衡处理,使之符合真实的环境条件;然后对前后相邻时刻构造的相似路径进行轨迹偏移度、速度相似度等进行一定条件约束,使其更加贴近真实用户,从而混淆攻击者,达到位置隐私保护的目的,最后本文通过实验对比验证了本文在匿名成功率、执行时间及位置隐私保护度方面的可行性.

    Abstract:

    At present, most of the protection technology based on location privacy is designed for the user to carry out a single LBS request, it only protects the location of the current real user, but ignores the situation where the real user location is leaked by the cooperative user's overlapping when the real user is repeatedly queried. In this scenario, location prediction based on the real user position is used by the attacker to track the real user trajectories, resulting in the leakage of real user location privacy. In this study, a Location Privacy Protection Method Based on Similar Path (LPBSP) is proposed when the user initiates a continuous LBS request. Firstly, a certain equilibrium process is carried out through the history user density in the grid structure to make it conform to the real environment conditions, and then the similar path constructed in the adjacent time is carried out. The trajectory offset and speed similarity are constrained to make it closer to the real users, so as to confuse the attackers and achieve the purpose of location privacy protection. Finally, the feasibility of anonymous success rate, execution time, and location privacy protection is verified by simulation experiments.

    参考文献
    相似文献
    引证文献
引用本文

解瑾,孙小婷.基于相似路径的位置隐私保护方法.计算机系统应用,2018,27(12):33-39

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-15
  • 最后修改日期:2018-05-08
  • 录用日期:
  • 在线发布日期: 2018-12-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号