基于动态质心迭代与偏差修正的室内定位方法
作者:
基金项目:

2016年福建省中青年教师教育科研项目(科技类)(JAT160573,JAT160574)


Indoor Positioning Method Based on Dynamic Centroid Iteration and Error Correction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    射频识别技术(RFID)是室内精确定位的重要技术之一.基于经典LANDMARC算法定位精度不高问题,提出了基于动态质心迭代和偏差修正相结合的定位算法.该算法采用最小关联度为准则,通过将近邻区域质心作为下一个参考标签依次迭代近邻成员,直至与目标标签的关联度低于阈值,实现预定位;通过实施k近邻成员重定位并引入修正系数对预定位坐标进行偏差修正.实验结果表明,相比于LANDMARC算法,该算法的定位准确度得到较大提高.

    Abstract:

    Radio Frequency Identification Technology (RFID) is one of the key technologies of indoor positioning. The traditional LANDMARC location algorithms have poor positioning accuracy. To solve this problem, a novel location algorithm is proposed by combining the dynamic centroid iteration and error correction. It updates nearest neighbors in turn by employing the centroid of the neighboring area as next reference tag which takes the minimum location relationship as the criterion, and achieves the pre-positioning coordinate until the location relationship with the target tag is lower than the threshold. The correction factor is adopted to compensate error of the pre-positioning coordinate by relocating each of k-nearest neighbors. Simulation results show that the proposed algorithm performs better in terms of positioning accuracy than LANDMARC.

    参考文献
    [1] 文祥计. 基于智能手机的声信号室内定位系统研究[硕士学位论文]. 杭州:浙江大学, 2016.
    [2] 俞敏杰, 易平, 关汉男. 基于快速部署的室内多楼层定位算法研究. 计算机工程, 2014, 40(9):23-26, 31. doi:10.3969/j.issn.1000-3428.2014.09.005
    [3] Ni LM, Liu YH, Lau YC, et al. LANDMARC:Indoor location sensing using active RFID. Proceedings of the 1st IEEE International Conference on Pervasive Computing and Communications. Fort Worth, TX, USA. 2003. 407-415.
    [4] Jin G, Lu XY, Park MS. An indoor localization mechanism using active RFID tag. Proceedings of 2006 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing. Taichung, Taiwan, China. 2006. 40-43.
    [5] Zhao YY, Liu YH, Ni LM. VIRE:Active RFID-based localization using virtual reference elimination. Proceedings of 2007 International Conference on Parallel Processing. Xi'an, China. 2007. 56.
    [6] Xu H, Ding Y, Li P, et al. An RFID indoor positioning algorithm based on bayesian probability and K-nearest neighbor. Sensors, 2017, 17(8):1806. doi:10.3390/s17081806
    [7] Wu X, Deng FM, Chen ZB. RFID 3D-LANDMARC localization algorithm based on quantum particle swarm optimization. Electronics, 2018, 7(2):19. doi:10.3390/electronics7020019
    [8] 张玲玉. LANDMARC定位系统及其算法的研究[硕士学位论文]. 长沙:中南大学, 2014.
    [9] 刘宏立, 周登, 徐琨, 等. 基于RSSI的自适应权重定位算法. 传感器与微系统, 2017, 36(3):140-143.
    [10] 徐杨杰, 王艳, 严大虎, 等. 基于Newton插值与混合灰狼优化SVR的RFID定位算法. 系统仿真学报, 2017, 29(9):1921-1929.
    [11] Gong FX, Ma YQ. Analysis of positioning performance of the algorithm of time sum of arrival with RMSE. Proceedings of the 2nd CCF Chinese Conference on Computer Vision. Tianjin, China. 2017. 579-591.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

苏国栋,徐世武,蔡碧丽.基于动态质心迭代与偏差修正的室内定位方法.计算机系统应用,2018,27(11):265-270

复制
分享
文章指标
  • 点击次数:1449
  • 下载次数: 2407
  • HTML阅读次数: 1297
  • 引用次数: 0
历史
  • 收稿日期:2018-04-17
  • 最后修改日期:2018-05-08
  • 在线发布日期: 2018-10-24
文章二维码
您是第11277971位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号