基于卷积神经网络的图像验证码识别
作者:

Image CAPTCHA Recognition Based on Convolutional Neural Network
Author:
  • QIN Bo

    QIN Bo

    Laboratory of Network Computing and High Efficient Algorithm, School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China;
    Anhui Provincial Key Laboratory of Computing and Communication Software, Hefei 230027, China;
    Institute of Advanced Technology, University of Science and Technology of China, Hefei 230027, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GU Nai-Jie

    GU Nai-Jie

    Laboratory of Network Computing and High Efficient Algorithm, School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China;
    Anhui Provincial Key Laboratory of Computing and Communication Software, Hefei 230027, China;
    Institute of Advanced Technology, University of Science and Technology of China, Hefei 230027, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Xiao-Ci

    ZHANG Xiao-Ci

    Laboratory of Network Computing and High Efficient Algorithm, School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China;
    Anhui Provincial Key Laboratory of Computing and Communication Software, Hefei 230027, China;
    Institute of Advanced Technology, University of Science and Technology of China, Hefei 230027, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIN Chuan-Wen

    LIN Chuan-Wen

    Laboratory of Network Computing and High Efficient Algorithm, School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China;
    Anhui Provincial Key Laboratory of Computing and Communication Software, Hefei 230027, China;
    Institute of Advanced Technology, University of Science and Technology of China, Hefei 230027, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    验证码作为一种安全手段,被广泛应用于互联网领域.本文提出了一种基于卷积神经网络的图像验证码识别方法,通过卷积层级联、残差学习、全局池化、分组卷积等技术手段,在保证识别准确率不受影响的前提下,大大降低了网络的参数量.本文以铁路购票网站验证码和正方教务系统验证码为例来测试模型性能.对于铁路购票网站验证码,实验结果显示本文提出的识别方法参数量最少,对图形和中文词组验证码的识别准确率分别达到98.76%和99.14%;对于正方教务系统验证码,本文方法参数量最少且识别准确率为87.30%.

    Abstract:

    As a security measure, CAPTCHA is widely used in Internet. This study proposes a CAPTCHA identification method based on convolutional neural network. Through convolutional layer concatenation, residual learning, global pool, and other technical means, under the premise of ensuring the recognition accuracy rate is not affected, it greatly reduces the amount of network parameters. This study uses the CAPTCHA in the railway ticket website and the CAPTCHA in the educational system as examples to test the performance of the model. For the CAPTCHA in railway ticket website, the experimental results show that this method has the least amount of parameters, and the recognition accuracy of this method is 98.76% for image and the recognition accuracy of the Chinese phrases is 99.14%. For the CAPTCHA in educational system, it has the least amount of parameters and the accuracy is 87.30%.

    参考文献
    [1] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105.
    [2] Zhang JS, Wang XF. Breaking Internet banking CAPTCHA based on instance learning. Proceedings of 2010 IEEE International Symposium on Computational Intelligence and Design. Hangzhou, China. 2010. 39-43.
    [3] 李兴国, 高炜. 基于滴水算法的验证码中粘连字符分割方法. 计算机工程与应用, 2014, 50(1):163-166. doi:10.3778/j.issn.1002-8331.1208-0310
    [4] Lu PP, Shan L, Li J, et al. A new segmentation method for connected characters in CAPTCHA. Proceedings of 2015 International Conference on Automation and Information Sciences. Changshu, China. 2015. 128-131.
    [5] Yan J, El Ahmad AS. A low-cost attack on a Microsoft CAPTCHA. Proceedings of the 15th ACM Conference on Computer and Communications Security. Alexandria, VA, USA. 2008. 543-554.
    [6] Mori G, Malik J. Recognizing objects in adversarial clutter:Breaking a visual CAPTCHA. Proceedings of 2003 IEEE Conference on Computer Vision and Pattern Recognition. Madison, WI, USA. 2003, 1. 134-141.
    [7] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324. doi:10.1109/5.726791
    [8] Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554. doi:10.1162/neco.2006.18.7.1527
    [9] Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA. 2012. 3642-3649.
    [10] Zhong ZY, Jin LW, Xie ZC. High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps. Proceedings of 201513th International Conference on Document Analysis and Recognition. Tunis, Tunisia. 2015. 846-850.
    [11] 范望, 韩俊刚, 苟凡, 等. 卷积神经网络识别汉字验证码. 计算机工程与应用, 2018, 54(3):160-165.
    [12] Goodfellow IJ, Bulatov Y, Ibarz J, et al. Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv:1312.6082, 2013.
    [13] Matan O, Burges CJC, LeCun Y, et al. Multi-digit recognition using a space displacement neural network. Moody JM, Hanson SJ, Lippman RP. Neural Information Processing Systems. San Mateo, CA:Morgan Kaufmann Publishers, 1992:488-495.
    [14] Shi BG, Bai X, Yao C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(11):2298-2304. doi:10.1109/TPAMI.2016.2646371
    [15] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.
    [16] He KM, Sun J. Convolutional neural networks at constrained time cost. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 5353-5360.
    [17] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    [18] Lin M, Chen Q, Yan SC. Network in network. arXiv:1312.4400, 2013.
    [19] Szegedy C, Liu W, Jia YQ, et al. Going deeper with convolutions. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 1-9.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

秦波,顾乃杰,张孝慈,林传文.基于卷积神经网络的图像验证码识别.计算机系统应用,2018,27(11):142-148

复制
分享
文章指标
  • 点击次数:2474
  • 下载次数: 3056
  • HTML阅读次数: 2370
  • 引用次数: 0
历史
  • 收稿日期:2018-04-02
  • 最后修改日期:2018-05-11
  • 在线发布日期: 2018-10-24
文章二维码
您是第11349293位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号