基于改进Faster RCNN与Grabcut的商品图像检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中科院先导专项课题(XDA06011203)


Product Image Detection Method Based on Improved Faster RCNN and Grabcut
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,图像检测方法已经被应用于很多领域.然而,这些方法都需要在目标任务上进行大量边框标注数据的重新训练.本文基于Faster RCNN方法,并对其进行改进,解决了在小数据且无需边框标注的情况下的商品图像检测问题.首先对Faster RCNN的边框回归层进行改进,提出了一种非类别特异性的边框回归层,仅使用公开数据集训练,无需在目标数据集上进行再训练,并将其用于数据预标定与商品检测.然后结合Grabcut与非类别特异性Faster RCNN提出了一种样本增强方法,用来生成包含多个商品的训练图像;并为Faster RCNN添加了重识别层,提高了检测精度.

    Abstract:

    In recent years, object detection has been applied to many fields. However, retraining using large amount of bounding-box labeled data is needed. This study improves the Faster RCNN method and solves the problem of detecting multi-object in images using few-shot single object training data without bounding-box annotation. We propose a non-classwise bounding-box regression layer, which is only trained by public dataset and used for product training image labeling and testing image detection. Combined with Grabcut method, a data augmentation method is proposed to generate multi-object product training image. The improved faster RCNN model is re-trained by these images. In addition, a re-identification layer is added to the Faster RCNN architecture and improves the detection performance.

    参考文献
    相似文献
    引证文献
引用本文

胡正委,朱明.基于改进Faster RCNN与Grabcut的商品图像检测.计算机系统应用,2018,27(11):128-135

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-03-27
  • 最后修改日期:2018-04-23
  • 录用日期:
  • 在线发布日期: 2018-10-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号