L1范数约束正交子空间非负矩阵分解
作者:
基金项目:

国家自然科学基金(61563037);江西省自然科学基金(20171BAB202018)


Non-Negative Matrix Factorization on Orthogonal Subspace with L1 Norm Constrains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对非负矩阵分解(NMF)相对稀疏或局部化描述原数据时导致的稀疏能力和程度比较弱的问题,提出了L1范数约束正交子空间非负矩阵分解方法.通过将L1范数约束引入到正交子空间非负矩阵分解的目标函数中,提升了分解结果的稀疏性.同时给出累乘迭代规则.在UCI、ORL和Yale三个数据库上进行的实验结果表明,该算法在聚类效果以及稀疏表达方面优于其他算法.

    Abstract:

    In order to solve the problem of unstable sparseness of Non-negative Matrix Factorization (NMF), an improved NMF on orthogonal subspace with L1 norm constraints was proposed. L1 norm constrained was introduced into the objective function of NMF on Orthogonal Subspace (NMFOS), which enhanced the sparsity of the decomposition results. The multiplicative updating procedure was also produced. Experiments on UCI, ORL, and Yale show that this algorithm is superior to other algorithms in clustering and sparse representation.

    参考文献
    1 Lee D, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755):788-791.[doi:10.1038/44565]
    2 Park CW, Park KT, Moon YS. Eye detection using eye filter and minimisation of NMF-based reconstruction error in facial image. Electronics Letters, 2010, 46(2):130-132.[doi:10.1049/el.2010.3239]
    3 Cai D, He X, Han J, et al. Graph regularized nonnegative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560.[doi:10.1109/TPAMI.2010.231]
    4 An SC, Yoo J, Choi S. Manifold-respecting discriminant nonnegative matrix factorization. Pattern Recognition Letters, 2011, 32(6):832-837.[doi:10.1016/j.patrec.2011.01.012]
    5 Ye J, Jin Z. Non-negative matrix factorisation based on fuzzy K nearest neighbour graph and its applications. Computer Vision, 2013, 7(5):346-353.[doi:10.1049/iet-cvi.2013.0055]
    6 Zhang T, Fang B, Tang YY, et al. Topology preserving non-negative matrix factori-zation for face recognition. IEEE Transactions on Image Processing, 2008, 17(4):574-584.[doi:10.1109/TIP.2008.918957]
    7 Yang ZR, Laaksonen J. Multi-plicative updates for non-negative projections. Neurocomputing, 2007, 71(1-3):363-373.[doi:10.1016/j.neucom.2006.11.023]
    8 Li Z, Wu XD, Peng H. Nonnegative matrix factorization on orthogonal subspace. Pattern Recognition Letters, 2010, 31(9):905-911.[doi:10.1016/j.patrec.2009.12.023]
    9 Lee DD, Seung HS. Algorithms for non-negative matrix factorization. Advanced in Neural Information Processing Systems. 2001. 556-562.
    10 Hoyer PO. Non-negative sparse coding. Proceedings of Neural Networks for Signal Processing. 2002. 557-565.
    11 Yang ZR, OJA E. Linear and nonlinear projective nonegative matrix factorization. Signal Processing, 2007, 87(8):1904-1916.[doi:10.1016/j.sigpro.2007.01.024]
    12 Samaria FS, Harter AC. Parameterisation of a stochastic model for human face identification. Proceedings of the Second IEEE Workshop on Applications of Computer Vision. Sarasota, FL, USA. 1994. 138-142.[doi:10.1109/ACV.1994.341300]
    13 Georghiades AS, Belhumeur PN, Kriegman DJ. From few to many:illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 26(6):643-660.[doi:10.1109/34.927464]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩东,盖杉. L1范数约束正交子空间非负矩阵分解.计算机系统应用,2018,27(9):205-209

复制
分享
文章指标
  • 点击次数:2038
  • 下载次数: 3487
  • HTML阅读次数: 2046
  • 引用次数: 0
历史
  • 收稿日期:2018-01-29
  • 最后修改日期:2018-02-27
  • 在线发布日期: 2018-08-17
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号