遗传算法在考虑能耗的单机批调度中的应用
作者:
基金项目:

国家自然科学基金(71671168)


Application of Genetic Algorithm to Single Machine Batch Scheduling Problem with Energy Cost Consideration
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    能耗总成本已成为生产调度中一个重要考虑因素,需要在最大完成时间和能耗总成本之间进行权衡,论文将遗传算法(GA)应用到考虑能耗的单机批调度中,并建立同时优化最大化完成时间和最小化能耗总成本的差异工件单机批调度模型.通过遗传算法在考虑能耗(CEC)和不考虑能耗(IEC)下求出非支配解集,利用工件分批的优化和对遗传选择算子的改进,以保证搜索的效率.实验结果表明,与IEC相比,在CEC下使用遗传算法求出的解效果更好,且随着问题规模的增大和工件加工功率的增加,所得解的优势更加明显.

    Abstract:

    Energy cost has become a critical factor in production scheduling where trade-off between makespan and total energy consumption should be considered. In this study the genetic algorithm is applied to the single machine batch scheduling problem with energy cost consideration and a model which simultaneously optimizes the makespan and total energy cost was proposed. By using the genetic algorithm, a set of non-dominated solutions are obtained in the situation of Considering Energy Consumption (CEC) and Ignoring Energy Consumption (ICE) respectively and the algorithm's efficiency was guaranteed by optimizing the batch and improving the selection of the genetic operators. The experimental results show that the solution is obtained under the CEC has better effectiveness than that under the IEC. Moreover, the performance of CEC is getting better obviously when the problem size and job power increase.

    参考文献
    1 Taylor P, Francoeur M, d'Ortigue OL, et al. Worldwide trends in energy use and efficiency:Key insights from IEA indicator analysis. IEEJ Workshop. Tokyo, Japan. 2008.
    2 Ikura Y, Gimple M. Efficient scheduling algorithms for a single batch processing machine. Operations Research Letters, 1986, 5(2):61-65.[DOI:10.1016/0167-6377(86)90104-5]
    3 Uzsoy R. Scheduling a single batch processing machine with non-identical job sizes. International Journal of Production Research, 1994, 32(7):1615-1635.[DOI:10.1080/00207549408957026]
    4 Pechmann A, Schöler I. Optimizing energy costs by intelligent production scheduling. In:Hesselbach J, Herrmann C, eds. Glocalized Solutions for Sustainability in Manufacturing. Berlin, Heidelberg:Springer, 2011. 293-298.
    5 Yu W, Li BZ, Jia HY, et al. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings, 2015, 88:135-143.[DOI:10.1016/j.enbuild.2014.11.063]
    6 Gong X, De Pessemier T, Joseph W, et al. A generic method for energy-efficient and energy-cost-effective production at the unit process level. Journal of Cleaner Production, 2016, 113:508-522.[DOI:10.1016/j.jclepro.2015.09.020]
    7 Melouk S, Damodaran P, Chang PY. Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing. International Journal of Production Economics, 2004, 87(2):141-147.[DOI:10.1016/S0925-5273(03)00092-6]
    8 Damodaran P, Manjeshwar PK, Srihari K. Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms. International Journal of Production Economics, 2006, 103(2):882-891.[DOI:10.1016/j.ijpe.2006.02.010]
    9 Shrouf F, Ordieres-Meré J, García-Sánchez A, et al. Optimizing the production scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner Production, 2014, 67:197-207.[DOI:10.1016/j.jclepro.2013.12.024]
    10 Che A, Zeng YZ, Lyu K. An efficient greedy insertion heuristic for energy-conscious single machine scheduling problem under time-of-use electricity tariffs. Journal of Cleaner Production, 2016, 129:565-577.[DOI:10.1016/j.jclepro.2016.03.150]
    11 Oron D. Scheduling a batching machine with convex resource consumption functions. Information Processing Letters, 2011, 111(19):962-967.[DOI:10.1016/j.ipl.2011.07.005]
    12 Liu GS, Zhang BX, Yang HD, et al. A branch-and-bound algorithm for minimizing the energy consumption in the PFS problem. Mathematical Problems in Engineering, 2013, 2013:546810.
    13 May G, Taisch M, Stahl B, et al. Toward energy efficient manufacturing:A study on practices and viewpoint of the industry. In:Emmanouilidis C, Taisch M, Kiritsis D, eds. IFIP International Conference on Advances in Production Management Systems. Berlin Heidelberg:Springer, 2012. 1-8.
    14 Nghiem TX, Behl M, Mangharam R, et al. Green scheduling of control systems for peak demand reduction. Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, FL, USA. 2011. 5131-5136.
    15 May G, Stahl B, Taisch M, et al. Multi-objective genetic algorithm for energy-efficient job shop scheduling. International Journal of Production Research, 2015, 53(23):7071-7089.[DOI:10.1080/00207543.2015.1005248]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴愁.遗传算法在考虑能耗的单机批调度中的应用.计算机系统应用,2018,27(8):138-145

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-12-22
  • 最后修改日期:2018-01-11
  • 在线发布日期: 2018-08-04
文章二维码
您是第11200890位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号