School of Computer Science, Fudan University, Shanghai 201203, China; Shanghai Key Laboratory of Data Science, Shanghai 201203, China 在期刊界中查找 在百度中查找 在本站中查找
School of Computer Science, Fudan University, Shanghai 201203, China; Shanghai Key Laboratory of Data Science, Shanghai 201203, China 在期刊界中查找 在百度中查找 在本站中查找
Image feature extraction is always the core task of computer vision and image processing. With the rapid development of deep learning, the Convolutional Neural Network (CNN) has gradually replaced the traditional image feature operator and became the main algorithm for feature extraction. Combined with CNN and sum pooling, we propose a new image feature extraction algorithm based on depth prior aiming at the data association problem in the crowd sourcing labeling system for urban remote sensing data. The feature can effectively focus on the objects in the vicinity of outdoor images and verify their good characterization of outdoor images via image retrieval experiments.
2 Turner BL, Skole D, Sanderson S, et al. Land-Use and land-cover change:science/research plan[J]. Global Change Report, 1995, 43(1995):669-679.
3 Chi M, Sun Z, Qin Y, et al. A Novel Methodology to Label Urban Remote Sensing Images Based on Location-Based Social Media Photos. Proceedings of the IEEE. 2017. 1926-1936.[doi:10.1109/JPROC.2017.2730585]
4 Lowe DG. Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE. 1999. 1150-1157.[doi:10.1109/ICCV.1999.790410]
5 Bay H, Tuytelaars T, Van Gool L. Surf:Speeded up robust features. Computer Vision-ECCV 2006. Gray, Austria. 2006. 404-417.
6 Dalal N, Triggs B. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego, CA, USA. 2005. 886-893.[doi:10.1109/CVPR.2005.177]
7 Jegou H, Perronnin F, Douze M, et al. Aggregating Local Image Descriptors into Compact Codes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012, 34(9):1704-1716.[doi:10.1109/TPAMI.2011.235]
8 Perronnin F, Dance C. Fisher kernels on visual vocabularies for image categorization. 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA. 2007. 1-8.[doi:10.1109/CVPR.2007.383266]
9 Arandjelovic R, Zisserman A. All About VLAD. computer vision and pattern recognition, 2013:1578-1585.
10 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the Acm, 2013, 60(2):2012.
11 Razavian A S, Azizpour H, Sullivan J, et al. CNN features off-the-shelf:an astounding baseline for recognition. Computer Vision and Pattern Recognition, 2014:512-519.
12 Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014. 580-587.[doi:10.1109/CVPR.2014.81]
13 Babenko A, Slesarev AV, Chigorin A, et al. Neural codes for image retrieval. In:Fleet D, Pajdla T, Schiele B, Tuytelaars T, eds. Computer Vision - ECCV 2014. Lecture Notes in Computer Science, vol 8689. Springer. Cham. 2014. 584-599.[doi:10.1007/978-3-319-10590-1_38]
14 Jegou H, Chum O. Negative evidences and co-occurences in image retrieval:The benefit of PCA and whitening. European Conference on Computer Vision. Lecture Notes on Computer Science, vol 7573. Sringer. Berlin, Heidelberg. 2012. 774-787.[doi:10.1007/978-3-642-33709-3_55]
15 Gong Y, Wang L, Guo R, et al. Multi-scale orderless pooling of deep convolutional activation features. In:Fleet D, Pajdla T, Schiele B, Tuytelaars T, eds. Computer Vision - ECCV 2014. Lecture Notes in Computer Science, vol 8695. Springer, Cham. 2014. 392-407.[doi:10.1007/978-3-319-10584-0_26]
16 Ng JY, Yang F, Davis LS, et al. Exploiting local features from deep networks for image retrieval. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Boston, MA, USA. 2015. 53-61.[doi:10.1109/CVPRW.2015.7301272]
17 Tolias G, Sicre R, Jégou H. Particular object retrieval with integral max-pooling of CNN activations. arXiv preprint arXiv, 2015:1511. 05879.
18 Babenko A, Lempitsky V. Aggregating local deep features for image retrieval. Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile. 2015. 1269-1277.[doi:10.1109/ICCV.2015.150]
19 Saxena A, Chung S H, Ng A Y, et al. Learning Depth from Single Monocular Images. Neural Information Processing Systems, 2006:1161-1168.
20 Saxena A, Sun M, Ng A. Make3D:Learning 3D scene structure from a single still image. IEEE TPAMI, 2009, 31:824-840.[doi:10.1109/TPAMI.2008.132]
21 Liu B, Gould S, Koller D, et al. Single image depth estimation from predicted semantic labels. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA. 2010. 1253-1260.[doi:10.1109/CVPR.2010.5539823]
22 Karsch K, Liu C, Kang SB, et al. Depth extraction from video using non-parametric sampling. In:Fitzgibbon A, Lazebnik S, Perona P, et al., eds. Computer Vision - ECCV 2012. Lecture Notes in Computer Science, vol 7576. Springer. Berlin, Heidelberg. 2012. 775-788.[doi:10.1007/978-3-642-33715-4_56]
23 Konrad J, Wang M, Ishwar P, et al. 2D-to-3D image conversion by learning depth from examples. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, RI, USA. 2012. 16-22.[doi:10.1109/CVPRW.2012.6238903]
24 Eigen D, Puhrsch C, Fergus R, et al. Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. Neural Information Processing Systems, 2014:2366-2374.
25 Liu F, Shen C, Lin G, et al. Deep convolutional neural fields for depth estimation from a single image. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA. 2015. 5162-5170.[doi:10.1109/CVPR.2015.7299152]
26 Philbin J, Chum O, Isard M, et al. Object retrieval with large vocabularies and fast spatial matching. 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA. 2007. 1-8.[doi:10.1109/CVPR.2007.383172]
27 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv, 2015:1409.1556.
28 Deng J, Dong W, Socher R, et al. ImageNet:A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA. 2009. 248-255.[doi:10.1109/CVPR.2009.5206848]
29 He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.[doi:10.1109/TPAMI.2015.2389824]